Currently, the novel COVID-19 coronavirus has been widely spread as a global pandemic. The COVID-19 pandemic has a major influence on human life, healthcare systems, and the economy. There are a large number of methods available for predicting the incidence of the virus. A complex and non-stationary problem such as the COVID-19 pandemic is characterized by high levels of uncertainty in its behavior during the pandemic time. The fuzzy logic, especially Type-2 Fuzzy Logic, is a robust and capable model to cope with high-order uncertainties associated with non-stationary time-dependent features. The main objective of the current study is to present a novel Deep Interval Type-2 Fuzzy LSTM (DIT2FLSTM) model for prediction of the COVID-19 incidence, including new cases, recovery cases, and mortality rate in both short and long time series. The proposed model was evaluated on real datasets produced by the world health organization (WHO) on top highly risked countries, including the USA, Brazil, Russia, India, Peru, Spain, Italy, Iran, Germany, and the U.K. The results confirm the superiority of the DIT2FLSTM model with an average area under the ROC curve (AUC) of 96% and a 95% confidence interval of [92-97] % in the short-term and long-term. The DIT2FLSTM was applied to a well-known standard benchmark, the Mackey-Glass time-series, to show the robustness and proficiency of the proposed model in uncertain and chaotic time series problems. The results were evaluated using a 10-fold cross-validation technique and statistically validated through the t-test method. The proposed DIT2FLSTM model is promising for the prediction of complex problems such as the COVID-19 pandemic and making strategic prevention decisions to save more lives.
Prediction of time series is associated with nondeterministic pattern analysis for uncertain conditions. Therefore, it is necessary to develop high-quality prediction methods for real-world applications. Type-2 fuzzy systems can handle high-order uncertainties, such as sequential dependencies associated with time series. Precise and reliable prediction can help to develop reasonable strategies and assist specialists in planning the best policies for modeling events in uncertain time series. In this study, a hybrid model (dynamic type-2 fuzzy time warping [DT2FTW]) was proposed for handling high-order uncertainties in time-series prediction. A type-2 fuzzy intelligent system was developed alongside a dynamic time warping algorithm for predicting the patterns' similarity in long-time series for time-series prediction. The results demonstrate that the proposed DT2FTW model yields more reliable predictions on global standard benchmarks such as the Mackey-Glass, Dow Jones, and NASDAQ time-series. The results also confirm that the proposed DT2FTW model has lower error rates than its counterpart algorithms in terms of the root mean square error (RMSE), mean absolute error (MAE), and mean percentage error (MPE). In addition, the results confirm the superiority of the proposed model with an average area under the ROC curve (AUC) of 94%, with the 95% confidence interval (92%-95%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.