In groundwater numerical simulations, the interactions between surface and groundwater have received great attention due to difficulties related to their validation and calibration due to the dynamic exchange occurring at the soil–water interface. The interaction is complex at small scales. However, at larger scales, the interaction is even more complicated, and has never been fully addressed. A clear understanding of the coupling strategies between the surface and groundwater is essential in order to develop numerical models for successful simulations. In the present review, two of the most commonly used coupling strategies in detailed domain models—namely, fully-coupled and loosely-coupled techniques—are reviewed and compared. The advantages and limitations of each modelling scheme are discussed. This review highlights the strategies to be considered in the development of groundwater flow models that are representative of real-world conditions between surface and groundwater interactions at regional scales.
Numerical simulation on groundwater is critical for water resources management. Much research has been conducted in the past using different techniques. Groundwater and surface water should not be treated as isolated components, but rather as interconnected constituents. The interaction between surface and ground water is complex and has never been fully understood. A clear understanding of fundamentals between surface and ground water is essential to conduct groundwater simulation. A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.