Tumor localization in traditional lung resection surgery requires manual palpation of the deflated lung through a thoracotomy. It is a painful procedure that is not suitable for many patients. Therefore, a multisensory mechatronic device was designed to localize tumors using a minimally invasive approach. The device is sensorized with tactile, ultrasound and position sensors in order to obtain multimodal data of soft tissue in real time. This paper presents the validation of the efficiency and efficacy of this device via an ex vivo experimental study. Tumor pathology was simulated by embedding iodine-agar phantom tumors of varying shapes and sizes into porcine liver tissue. The device was then used to palpate the tissue to localize and visualize the simulated tumors. Markers were then placed on the location of the tumors and fluoroscopic imaging was performed on the tissue in order to determine the localization accuracy of the device. Our results show that the device localized 87.5% of the tumors with an average deviation from the tumor center of 3.42 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.