Many potential applications of monolayer transition metal dichalcogenides (TMDs) require both high photoluminescence (PL) yield and high electrical mobilities. However, the PL yield of as prepared TMD monolayers is low and believed to be limited by defect sites and uncontrolled doping. This has led to a large effort to develop chemical passivation methods to improve PL and mobilities. The most successful of these treatments is based on the nonoxidizing organic “superacid” bis(trifluoromethane)sulfonimide (TFSI) which has been shown to yield bright monolayers of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) but with trap-limited PL dynamics and no significant improvements in field effect mobilities. Here, using steady-state and time-resolved PL microscopy we demonstrate that treatment of WS2 monolayers with oleic acid (OA) can greatly enhance the PL yield, resulting in bright neutral exciton emission comparable to TFSI treated monolayers. At high excitation densities, the OA treatment allows for bright trion emission, which has not been demonstrated with previous chemical treatments. We show that unlike the TFSI treatment, the OA yields PL dynamics that are largely trap free. In addition, field effect transistors show an increase in mobilities with the OA treatment. These results suggest that OA serves to passivate defect sites in the WS2 monolayers in a manner akin to the passivation of colloidal quantum dots with OA ligands. Our results open up a new pathway to passivate and tune defects in monolayer TMDs using simple “wet” chemistry techniques, allowing for trap-free electronic properties and bright neutral exciton and trion emission.
Structural defects vary the optoelectronic properties of monolayer transition metal dichalcogenides, leading to concerted efforts to control defect type and density via materials growth or postgrowth passivation. Here, we explore a simple chemical treatment that allows on–off switching of low-lying, defect-localized exciton states, leading to tunable emission properties. Using steady-state and ultrafast optical spectroscopy, supported by ab initio calculations, we show that passivation of sulfur vacancy defects, which act as exciton traps in monolayer MoS2 and WS2, allows for controllable and improved mobilities and an increase in photoluminescence up to 275-fold, more than twice the value achieved by other chemical treatments. Our findings suggest a route for simple and rational defect engineering strategies for tunable and switchable electronic and excitonic properties through passivation.
Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) and inorganic semiconducting zero-dimensional (0D) quantum dots (QDs) offer unique charge and energy transfer pathways which could form the basis of novel optoelectronic devices. To date, most has focused on charge transfer and energy transfer from QDs to TMDs, i.e. from 0D to 2D. Here, we present a study of the energy transfer process from a 2D to 0D material, specifically exploring energy transfer from monolayer tungsten disulphide (WS2) to near infrared (NIR) emitting lead sulphide-cadmium sulphide (PbS-CdS) QDs. The high absorption cross section of WS2 in the visible region combined with the potentially high photoluminescence (PL) efficiency of PbS QD systems, make this an interesting donoracceptor system that can effectively use the WS2 as an antenna and the QD as a tuneable emitter, in this case downshifting the emission energy over hundreds of meV. We study the energy transfer process using photoluminescence excitation (PLE) and PL microscopy, and show that 58% of the QD PL arises due to energy transfer from the WS2. Time resolved photoluminescence (TRPL) microscopy studies show that the energy transfer process is faster than the intrinsic PL quenching by trap states in the WS2, thus allowing for efficient energy transfer. Our results establish that QDs could be used as tuneable and high PL efficiency emitters to modify the emission properties of TMDs. Such TMD/QD heterostructures could have applications in light emitting technologies, artificial light harvesting systems or be used to read out the state of TMD devices optically in various logic and computing applications
Ultrafast vibrational spectroscopy is employed to obtain real-time structural information on energy transport in double-walled light-harvesting nanotubes at room temperature, stabilized in a host matrix to mimic the rigid scaffolds of natural light-harvesting systems. We observe evidence of a low-frequency vibrational mode at 315 cm, which transfers excitons from the outer wall of the nanotubes to a crossing point through which energy transfer to the inner wall can occur. This mode is furthermore absent in solution phase. Importantly, the coherence of this mode is not transferred to the inner wall upon energy transfer and is only present on the outer wall's excited-state energy surface, highlighting that complete energy transfer between the outer and inner walls does not take place. Isolation of the individual walls of the nanotubes provides evidence that this mode corresponds to a supramolecular motion of the nanotubes. Our results emphasize the importance of the solid-state environment in modulating vibronic coupling and directing energy transfer in molecular light-harvesting systems.
The inherently low photoluminescence (PL) yields in as prepared transition metal dichalcogenide (TMD) monolayers are broadly accepted to be the result of atomic vacancies (i.e. defects) and uncontrolled doping, which...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.