Abnormally high levels of iron are observed in the brain of patients suffering from neurodegenerative disorders. The mechanisms involved in iron accumulation in neurodegenerative disorders remain poorly understood. In the present study we investigated the effects of aging and neonatal iron overload on the mRNA expression of proteins critically involved in controlling iron homeostasis. Wistar rat pups received a single daily dose of vehicle or iron (10 mg/kg of b.w. of Fe(2+)), at postnatal days 12-14. The expression of Transferrin Receptor (TfR), H-Ferritin, and IRP2 were analyzed by a semi-quantitative reverse transcriptase polymerase chain reaction assay in cortex, hippocampus and striatum of rats sacrificed at three different ages (15-day-old; 90-day-old and 2-year old rats). Results indicate that TfR, H-ferritin, and IRP2 mRNA expression was differentially affected by aging and by neonatal iron treatment in all three brain regions. These findings might have implications for the understanding of iron homeostasis misregulation associated with neurodegenerative disorders.
Histone acetylation, a type of chromatin modification that allows increased gene transcription and can be pharmacologically promoted by histone deacetylase (HDAC) inhibitors (HDACis), has been consistently associated with promoting memory formation in the hippocampus. The basolateral nucleus of the amygdala (BLA) is a brain area crucially involved in enabling hormones and drugs to influence memory formation. Here, we show that BLA activity is required for memory enhancement by intrahippocampal administration of an HDACi. Two different HDACis, sodium butyrate (NaB) and trichostatin A (TSA), differentially enhanced the retention of memory for inhibitory avoidance (IA) when administered to the dorsal hippocampus after training. TSA showed a biphasic pattern of response during consolidation, in which infusions given immediately or 3h after training produced memory enhancement, whereas no effect was observed when it was infused 1.5 or 6h posttraining. Muscimol (MUS)-induced unilateral functional inactivation of the BLA prevented the enhancement of memory retention produced by posttraining infusion of TSA into the ipsilateral hippocampus. TSA did not affect IA extinction or reconsolidation. These results indicate that HDACis can increase IA memory retention when given into the hippocampus, and, most importantly, BLA activity is necessary for enabling HDACi-induced influences on memory formation.
Here we show that a systemic injection of the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB) immediately after training in a step-down inhibitory avoidance task produced an enhancement of memory consolidation that persisted across consecutive retention tests during 14 days in aged rats, while it did not significantly affect memory in young adults. Control aged and young adult rats showed comparable basal levels of memory retention. Our results suggest that HDACis can display memory-enhancing effects specific for aged animals, even in the absence of age-related memory impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.