Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
Studies combined in a meta-analysis often have differences in their design and conduct that can lead to heterogeneous results. A random-effects model accounts for these differences in the underlying study effects, which includes a heterogeneity variance parameter. The DerSimonian-Laird method is often used to estimate the heterogeneity variance, but simulation studies have found the method can be biased and other methods are available. This paper compares the properties of nine different heterogeneity variance estimators using simulated meta-analysis data. Simulated scenarios include studies of equal size and of moderate and large differences in size. Results confirm that the DerSimonian-Laird estimator is negatively biased in scenarios with small studies and in scenarios with a rare binary outcome. Results also show the Paule-Mandel method has considerable positive bias in meta-analyses with large differences in study size. We recommend the method of restricted maximum likelihood (REML) to estimate the heterogeneity variance over other methods. However, considering that meta-analyses of health studies typically contain few studies, the heterogeneity variance estimate should not be used as a reliable gauge for the extent of heterogeneity in a meta-analysis. The estimated summary effect of the meta-analysis and its confidence interval derived from the Hartung-Knapp-Sidik-Jonkman method are more robust to changes in the heterogeneity variance estimate and show minimal deviation from the nominal coverage of 95% under most of our simulated scenarios.
Exercise alone and various combinations of interventions were associated with lower risk of injurious falls compared with usual care. Choice of fall-prevention intervention may depend on patient and caregiver values and preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.