Pristine zirconia, ZrO2, possesses high premise as photocatalyst due to its conduction band energy edge. However, its high energy-gap is prohibitive for photoactivation by solar-light. Currently, it is unclear how solar-active zirconia can be designed to meet the requirements for high photocatalytic performance. Moreover, transferring this design to an industrial-scale process is a forward-looking route. Herein, we have developed a novel Flame Spray Pyrolysis process for generating solar-light active nano-ZrO2−x via engineering of lattice vacancies, Vo. Using solar photons, our optimal nano-ZrO2−x can achieve milestone H2-production yield, > 2400 μmolg−1 h−1 (closest thus, so far, to high photocatalytic water splitting performance benchmarks). Visible light can be also exploited by nano-ZrO2−x at a high yield via a two-photon process. Control of monomeric Vo versus clusters of Vo’s is the key parameter toward Highly-Performing-Photocatalytic ZrO2−x. Thus, the reusable and sustainable ZrO2−x catalyst achieves so far unattainable solar activated photocatalysis, under large scale production.
In photocatalysis, especially in CO2 reduction and H2 production, the development of multicomponent nanomaterials provides great opportunities to tune many critical parameters toward increased activity. This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) of varying morphology and modified carbon nitride (CN), targeting on optimizing their response under UV–visible irradiation. MOF structures were used as precursors for the synthesis of Co3O4. A facile solvothermal approach allowed the development of ultrathin two-dimensional (2D) Co3O4 nanosheets (Co3O4-NS). The optimized CN and Co3O4 structures were coupled forming heterojunctions, and the content of each part was optimized. Activity was significantly improved in the nanocomposites bearing Co3O4-NS compared with the corresponding bulk Co3O4/CN composites. Transient absorption spectroscopy revealed a 100-fold increase in charge carrier lifetime on Co3O4-NS sites in the composite compared with the bare Co3O4-NS. The improved photocatalytic activity in H2 production and CO2 reduction is linked with (a) the larger interface imposed from the matching 2D structure of Co3O4-NS and the planar surface of CN, (b) improvements in charge carrier lifetime, and (c) the enhanced CO2 adsorption. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.
Cu2O is among the most promising photocatalysts for CO2 reduction, however its photocorrosion remains a standalone challenge. Herein, we present an in situ study of the release of Cu ions from Cu2O nanocatalysts under photocatalytic conditions in the presence of HCO3 as a catalytic substrate in H2O. The Cu-oxide nanomaterials were produced by Flame Spray Pyrolysis (FSP) technology. Using Electron Paramagnetic Resonance (EPR) spectroscopy in tandem with analytical Anodic Stripping Voltammetry (ASV), we monitored in situ the Cu2+ atom release from the Cu2O nanoparticles in comparison with CuO nanoparticles under photocatalytic conditions. Our quantitative, kinetic data show that light has detrimental effect on the photocorrosion of Cu2O and ensuing Cu2+ ion release in the H2O solution, up to 15.7% of its mass. EPR reveals that HCO3 acts as a ligand of the Cu2+ ions, promoting the liberation of {HCO3-Cu} complexes in solution from Cu2O, up to 27% of its mass. HCO3 alone exerted a marginal effect. XRD data show that under prolonged irradiation, part of Cu2+ ions can reprecipitate on the Cu2O surface, creating a passivating CuO layer that stabilizes the Cu2O from further photocorrosion. Including isopropanol as a hole scavenger has a drastic effect on the photocorrosion of Cu2O nanoparticles and suppresses the release of Cu2+ ions to the solution. Methodwise, the present data exemplify that EPR and ASV can be useful tools to help quantitatively understand the solid–solution interface photocorrosion phenomena for Cu2O.
ABO3 perovskites offer versatile photoactive nano-templates that can be optimized towards specific technologies, either by means of doping or via heterojunction engineering. SrTiO3 is a well-studied perovskite photocatalyst, with a highly reducing conduction-band edge. Herein we present a Double-Nozzle Flame Spray Pyrolysis (DN-FSP) technology for the synthesis of high crystallinity SrTiO3 nanoparticles with controlled La-doping in tandem with SrTiO3/CuO-heterojunction formation. So-produced La:SrTiO3/CuO nanocatalysts were optimized for photocatalysis of H2O/CH3OH mixtures by varying the La-doping level in the range from 0.25 to 0.9%. We find that, in absence of CuO, the 0.9La:SrTiO3 material achieved maximal efficient photocatalytic H2 production, i.e., 12 mmol g−1 h−1. Introduction of CuO on La:SrTiO3 enhanced selective production of methane CH4. The optimized 0.25La:SrTiO3/0.5%CuO catalyst achieved photocatalytic CH4 production of 1.5 mmol g−1 h−1. Based on XRD, XRF, XPS, BET, and UV-Vis/DRS data, we discuss the photophysical basis of these trends and attribute them to the effect of La atoms in the SrTiO3 lattice regarding the H2-production, plus the effect of interfacial CuO on the promotion of CH4 production. Technology-wise this work is among the first to exemplify the potential of DN-FSP for scalable production of complex nanomaterials such as La:SrTiO3/CuO with a diligent control of doping and heterojunction in a single-step synthesis.
Palladium is among the most versatile noble-metal atoms that, when dispersed on solid supports, can be stabilized in 0, +1, +2, +3 redox states. Moreover, despite its noble-metal character, Pd shows a considerable degree of chemical reactivity. In Pd Nanoparticles (NPs), atomic {Pdn+-X} states, where n = 0, 1, 2, 3, and X = atom or hydride, can play key roles in catalytic processes. Pd-oxygen moieties can be stabilized at nanointerfaces of Pd in contact with metal-oxides. These {Pdn+-X}s can be either isolated Pd atoms dispersed on the support, or, more interestingly, atomic states of Pd occurring on the Pd NPs. The present review focuses on the role of such {Pdn+-X} states in catalytic processes related to energy storage or energy conversion, with specific focus on photocatalysis, H2 production reaction (HRR), oxygen reduction reaction (ORR), and water-splitting. Synthesis of atomic {Pdn+-X} states and their detection methodology is among the current challenges. Herein, the chemistry of {Pdn+-X} states on Pd- [metal oxide] interfaces, methods of detection, and identification are discussed. The implication of {Pdn+-X} in transient catalytic intermediates is reviewed. Finally, the role of {Pdn+-X} in photo electrocatalytic processes is critically discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.