Aggregation of the natively unfolded protein α-synuclein (α-syn) is key to the development of Parkinson’s disease (PD). Some nanoparticles (NPs) can inhibit this process and in turn be used for treatment of PD. Using simulation strategies, we show here that α-syn self-assembly is electrostatically driven. Dimerization by head-to-head monomer contact is triggered by dipole–dipole interactions and subsequently stabilized by van der Waals interactions and hydrogen bonds. Therefore, we hypothesized that charged nano-objects could interfere with this process and thus prevent α-syn fibrillation. In our simulations, positively and negatively charged graphene sheets or superparamagnetic iron oxide NPs first interacted with α-syn’s N/C terminally charged residues and then with hydrophobic residues in the non-amyloid-β component (61–95) region. In the experimental setup, we demonstrated that the charged nano-objects have the capacity not only to strongly inhibit α-syn fibrillation (both nucleation and elongation) but also to disaggregate the mature fibrils. Through the α-syn fibrillation process, the charged nano-objects induced the formation of off-pathway oligomers.
The study showed that the consumption of salt among the Iranian population is higher than the level recommended by WHO. To reduce salt intake, it is necessary to adopt a combination of nationwide policies such as food reformulation and food labelling.
Introduction To integrate and execute a proper preventive plan and reduce the risk of non-communicable diseases (NCDs), policy makers need to have access to both reliable data and a unique definition of metabolic syndrome (MetS). This study was conducted on the data collected by cross-sectional studies of WHO’s STEPwise approach to surveillance of NCD risk factors (STEPs) to estimate the national and sub-national prevalence rates of MetS in Iran in 2016. Materials and methods The prevalence of MetS was estimated among 18,414 individuals aged ≥25 years living in urban and rural areas of Iran using various definition criteria; National Cholesterol Education Program Adult Treatment Panel III 2004 (ATP III), International Diabetes Federation (IDF), American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI), Joint Interim Statement (JIS). Regional IDF (RIDF) and JIS (RJIS) were defined using ethnicity-specific values of waist circumference for the country. Results National prevalence rate of MetS based on ATP III, IDF, AHA/NHLBI, JIS, RIDF and RJIS criteria were 38.3% (95% CI 37.4–39.1), 43.5% (42.7–44.4), 40.9% (40.1–41.8), 47.6% (46.8–48.5), 32.0% (31.2–32.9), and 40.8% (40.0–41.7), respectively. The prevalence was higher among females, in urban residents, and those aged 65–69 years. MetS was expected to affect about 18.7, 21.3, 20.0, 23.3, 15.7, and 20.0 million Iranians, respectively, based on ATP III, IDF, AHA/NHLBI, JIS, RIDF and RJIS. The two most common components noted in this population were reduced high-density lipoprotein cholesterol (HDL-C) levels and central obesity. Conclusion High prevalence rate of MetS among Iranian adults is alarming, especially among females, urban residents, and the elderly. The JIS definition criteria is more appropriate to determine higher number of Iranians at risk of NCDs. Proper management and prevention of MetS is required to adopt multiple national plans including lifestyle modifications, medical interventions, and public education on NCDs risk factors.
Diabetes is a common chronic disease affecting millions of people worldwide. It underlies various complications and imposes many costs on individuals and society. Discovering early diagnostic biomarkers takes excellent insight into preventive plans and the best use of interventions. Therefore, in the present study, we aimed to evaluate the association between the level of amino acids and acylcarnitines and diabetes to develop diabetes predictive models. Using the targeted LC–MS/MS technique, we analyzed fasting plasma samples of 206 cases and 206 controls that were matched by age, sex, and BMI. The association between metabolites and diabetes was evaluated using univariate and multivariate regression analysis with adjustment for systolic and diastolic blood pressure and lipid profile. To deal with multiple comparisons, factor analysis was used. Participants' average age and BMI were 61.6 years, 28.9 kg/m2, and 55% were female. After adjustment, Factor 3 (tyrosine, valine, leucine, methionine, tryptophan, phenylalanine), 5 (C3DC, C5, C5OH, C5:1), 6 (C14OH, C16OH, C18OH, C18:1OH), 8 (C2, C4OH, C8:1), 10 (alanine, proline) and 11 (glutamic acid, C18:2OH) were positively associated with diabetes. Inline, factor 9 (C4DC, serine, glycine, threonine) and 12 (citrulline, ornithine) showed a reverse trend. Some amino acids and acylcarnitines were found as potential risk markers for diabetes incidents that reflected the disturbances in the several metabolic pathways among the diabetic population and could be targeted to prevent, diagnose, and treat diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.