Biot's equations of poroelasticity contain a parabolic system for the evolution of the pressure, which is coupled with a quasi-stationary equation for the stress tensor. Thus, it is natural to extend the existing work on isogeometric space-time methods to this more advanced framework of a partial differential-algebraic equation (PDAE). A space-time approach based on finite elements has already been introduced. We present a new weak formulation in space and time that is appropriate for an isogeometric discretization and analyze its convergence properties. Our approach is based on a single variational problem and hence differs from the iterative space-time schemes considered so far. Further, it enables high-order convergence. Numerical experiments that have been carried out confirm the theoretical findings.
Scaled boundary isogeometric analysis (SB-IGA) describes the computational domain by proper boundary NURBS together with a well-defined scaling center; see [5]. More precisely, we consider star convex domains whose domain boundaries correspond to a sequence of NURBS curves and the interior is determined by a scaling of the boundary segments with respect to a chosen scaling center. However, providing a decomposition into star shaped blocks one can utilize SB-IGA also for more general shapes. Even though several geometries can be described by a single patch, in applications frequently there appear multipatch structures. Whereas a C 0 continuous patch coupling can be achieved relatively easily, the situation becomes more complicated if higher regularity is required. Consequently, a suitable coupling method is inevitably needed for analyses that require global C 1 continuity.In this contribution we apply the concept of analysis-suitable G 1 parametrizations [2] to the framework of SB-IGA for the C 1 coupling of planar domains with a special consideration of the scaling center. We obtain globally C 1 regular basis functions and this enables us to handle problems such as the Kirchhoff-Love plate and shell, where smooth coupling is an issue. Furthermore, the boundary representation within SB-IGA makes the method suitable for the concept of trimming. In particular, we see the possibility to extend the coupling procedure to study trimmed plates and shells.The approach was implemented using the GeoPDEs package [1] and its performance was tested on several numerical examples. Finally, we discuss the advantages and disadvantages of the proposed method and outline future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.