National electricity consumed continues to rise by up to 6.4 % per year, which are not comparable with the availability of fossil fuels as a primary energy coal-fired power plant in Indonesia. Utilization of ocean energy in particular flow energy has performed as one of the primary energy options. Tides are responsible for the renewable energy of ocean currents. Changes in flow velocity of ocean water due to the ups and downs of ocean water can be used as the primary energy to drive turbines and generate electricity. This study investigates the ocean current power plant in Indonesia that relates to the characteristics of the ocean current. The data used for this research belonged to R&D Center Marine Geology (PPPGL) from ocean current data in the Toyapakeh, Pantar, Larantuka, Molo, Boleng and Gam strait. This study looked at both the technical and socioeconomic aspects of the six locations mentioned above. Larantuka strait had the greatest potential for ocean currents in the strait. The turbine was designed using Computational Fluid Dynamics (CFD), with a capacity of 100 kW for the Horizontal Axis turbine. The findings demonstrated that the turbine design could produce electrical energy at low ocean current speeds (cut-in speed) of 0.3 m/s, and that the rotor power generated at ocean current speeds of 2.2 m/s approached the design capacity of 100 kW.
Adsorption on a solid adsorbent is the fundamental processes in the field of separation processes, purification of gases, adsorption cooling, advanced adsorption cooling, and extensive work on hydrogen storage. The understanding of the thermodynamic properties of adsorbent plus adsorbate system is important to analyze. Information concerning the relevant adsorption equilibrium and characterized of adsorbent is generally an essential requirement for the analysis and design of an adsorption separation process. For practical application, theadsorption equilibrium must be known over a broad range of operation temperatures. Also, the isotherms of pure species are fundamental information for dynamic simulation of adsorbers. The main objective of this research is to design kinetic adsorption test rig to investigate the capacity and rate of adsorption on adsorbent and adsorbate pair’s. The result of design kinetic adsorption test rig including dimensions of vapor vessel (pressure vessel) and measuring cell. The volume of vapour vessel is 1000 ml and measuring cell is 100 ml. Kinetic adsorption test rig was manufactured to investigate capacity and rate of adsorption up to 40 bar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.