Cytosolic delivery of functional siRNA remains the major challenge to develop siRNA-based therapeutics. Designing clinically safe and effective siRNA transporter to deliver functional siRNA across the plasma and endosomal membrane remains a key hurdle. With the aim of improving endosomal release, we have designed cyclic and linear peptide-based transporters having an Arg-DHis-Arg template. Computational studies show that the Arg-DHis-Arg template is also stabilized by the Arg–His side-chain hydrogen bonding interaction at physiological pH, which dissociates at lower pH. The overall atomistic interactions were examined by molecular dynamics simulations, which indicate that the extent of peptide_siRNA assembly formation depends greatly on physicochemical properties of the peptides. Our designed peptides having the Arg-DHis-Arg template and two lipidic moieties facilitate high yield of intracellular delivery of siRNA. Additionally, unsaturated lipid, linoleic acid moieties were introduced to promote fusogenicity and facilitate endosomal release and cytosolic delivery. Interestingly, such protease-resistant peptides provide serum stability to siRNA and exhibit high efficacy of erk1 and erk2 gene silencing in the triple negative breast cancer (TNBC) cell line. The peptide having two linoleyl moieties demonstrated comparable efficacy with commercial transfection reagent HiPerFect, as evidenced by the erk1 and erk2 gene knockdown experiment. Additionally, our study shows that ERK1/2 silencing siRNA and doxorubicin-loaded gramicidin-mediated combination therapy is more effective than siRNA-mediated gene silencing-based monotherapy for TNBC treatment.
Engineering bioinspired peptide-based molecular medicine is an emerging paradigm for the management of traumatic coagulopathies and inherent bleeding disorder. A hemostat-based strategy in managing uncontrolled bleeding is limited due to the lack of adequate efficacy and clinical noncompliance. In this study, we report an engineered adhesive peptide-based hybrid regenerative medicine, sealant 5, which is designed integrating the structural and functional features of fibrin and mussel foot-pad protein. AFM studies have revealed that sealant 5 (55.8 ± 6.8 nN adhesive force) has higher adhesive force than fibrin (46.4 ± 7.3 nN adhesive force). SEM data confirms that sealant 5 retains its network-like morphology both at 37 and 60 °C, inferring its thermal stability. Both sealant 5 and fibrin exhibit biodegradability in the presence of trypsin, and sealant 5 also showed biocompatibility in the presence of fibroblast cells. Engineered sealant 5 efficiently promotes hemostasis with enhanced adhesiveness and less blood-loss than fibrin. In vivo data suggests that in heparinized conditions, sealant 5 ceases bleeding at 212.3 ± 15.1 s, whereas fibrin halts bleeding at 294.3 ± 21.4 s and blood-loss is ∼4-fold less in sealant 5 than in fibrin. In a heparinized system, sealant 5 facilitates faster blood-clotting than fibrin (∼82 s faster) and RADA-16, a reported peptide-based sealant (∼113 s faster). Additionally, in the case of sealant 5, the process of clotting mimicry-like fibrin is independent of the body's own coagulation system. Sealant 5 efficiently halts bleeding for both external and internal wounds, even for a heparinized system overcoming the bacterial infection. ELISA data and PMBC cell proliferation data support the nonimmunogenic feature of sealant 5. Though fibrin and sealant 5 have exhibited comparable efficacy in suture-free wound closure, in vivo H&E staining images have revealed infiltration of very few immune cells as well as the presence of abundant collagen formation in the case of sealant 5-treated wound. Such nature-inspired non-immunogenic sealants offer exciting possibilities for the treatment of uncontrolled bleeding vis-a-vis wound closure.
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.