Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG’s antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being due to their size and poor ability to penetrate into tissues. In view of their small size, there is a rising interest in derivatives, such as single-domain antibodies and single-chain variable fragments, for clinical diagnostic but also therapeutic applications. Smaller antibody formats combine several benefits for clinical applications and can be manufactured at reduced production costs compared with full-length IgGs. Moreover, such formats have a relevant potential for targeted drug delivery that directs drug cargo to a specific tissue or across the blood–brain barrier. In this review, we give an overview of the challenges for antibody drug delivery in general and focus on intranasal delivery to the central nervous system with antibody formats of different sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.