An accurate load forecasting has always been one of the main indispensable parts in the operation and planning of power systems. Among different time horizons of forecasting, while short-term load forecasting (STLF) and long-term load forecasting (LTLF) have respectively got benefits of accurate predictors and probabilistic forecasting, medium-term load forecasting (MTLF) requires more attentions due to its vital role in power system operation and planning such as optimal scheduling of generation units, robust planning programs for customer service, and economic supply. In this study, a hybrid method, composed of Support Vector Regression (SVR) and Symbiotic Organism Search Optimization (SOSO) method, is proposed for MTLF. In the proposed forecasting model, SVR is the main part of the forecasting algorithm while SOSO is embedded into it to optimize the parameters of SVR. In addition, a minimum redundancy-maximum relevance feature selection algorithm is applied in the preprocessing of input data. The proposed method is tested on EUNITE competition dataset and compared with some previous works to demonstrate its high performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.