Here we report on accurate ab initio calculations to study astrophysically important electromagnetic transition parameters among different low-lying states of Sn IV. Our ab initio calculations are based on the sophisticated relativistic coupled-cluster theory, which almost exhausts many important electron correlations. To establish the accuracy of the calculations, we compare our results with the available experiments and estimates the transition amplitudes in length and velocity gauged forms. Most of these allowed and forbidden transition wavelengths lie in the infrared region, and they can be observed in the different cool stellar and interstellar media. For the improvement of uncertainty, we use experimental energies to the estimations of the above transition parameters. The presented data will be helpful to find the abundances of the ion in different astrophysical and laboratory plasma.
Abstract. Spectroscopic properties, useful for plasma diagnostics and astrophysics, of a few rubidium-like ions are studied here. We choose one of the simplest, but correlationally challenging series where d− and f − orbitals are present in the core and/or valence shells with 4d 2 D 3/2 as the ground state. We study different correlation characteristics of this series and make precise calculations of electronic structure and rates of electromagnetic transitions. Our calculated lifetimes and transition rates are compared with other available experimental and theoretical values. Radiative rates of vacuum ultra-violet electromagnetic transitions of the long lived Tc 6+ ion, useful in several areas of physics and chemistry, are estimated. To the best of our knowledge, there is no literature for most of these transitions.Electron-correlation study of Y III-Tc VII ions using a relativistic coupled-cluster theory 2
In this work, we present a scheme of a two-photon interaction to calculate magic wavelengths for the 62S12− 52D32,52 clock transitions of Ba+ ion employing the relativistic coupled-cluster method. These magic wavelengths can be essential inputs to achieve better accuracy in the future ionic clock experiments. In this paper, we further show an application of a two-photon interaction to the spin-mixing processes, |0,0⟩↔|+1,−1⟩ and |0,0⟩↔|−1,+1⟩, of an ultra-cold spin-1 mixture of 137Ba+ ions and 87Rb atoms. We determine the protocols for selecting these spin-mixing oscillations by changing the strength and frequencies of the externally applied magnetic field and laser beams, respectively.
The growing interest in atomic structures of moderately stripped alkali-like ions in the diagnostic study and modeling of astrophysical and laboratory plasma makes an accurate many-body study of atomic properties inevitable. This work presents transition line parameters in the absence or presence of plasma atmosphere for astrophysically important candidates Ar7+, Kr7+, Xe7+, and Rn7+. We employ relativistic coupled-cluster (RCC) theory, a well-known correlation exhaustive method. In the case of a plasma environment, we use the Debye Model. Our calculations agree with experiments available in the literature for ionization potentials, transition strengths of allowed and forbidden selections, and lifetimes of several low-lying states. The unit ratios of length and velocity forms of transition matrix elements are the critical estimation of the accuracy of the transition data presented here, especially for a few presented for the first time in the literature. We do compare our findings with the available recent theoretical results. Our reported data can be helpful to the astronomer in estimating the density of the plasma environment around the astronomical objects or in the discovery of observational spectra corrected by that environment. The present results should be advantageous in the modeling and diagnostics laboratory plasma, whereas the calculated ionization potential depression parameters reveal important characteristics of atomic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.