Energy production using renewable sources exhibits inherent uncertainties due to their intermittent nature. Nevertheless, the unified European energy market promotes the increasing penetration of renewable energy sources (RES) by the regional energy system operators. Consequently, RES forecasting can assist in the integration of these volatile energy sources, since it leads to higher reliability and reduced ancillary operational costs for power systems. This paper presents a new dataset for solar and wind energy generation forecast in Greece and introduces a feature engineering pipeline that enriches the dimensional space of the dataset. In addition, we propose a novel method that utilizes the innovative Prophet model, an end-to-end forecasting tool that considers several kinds of nonlinear trends in decomposing the energy time series before a tree-based ensemble provides short-term predictions. The performance of the system is measured through representative evaluation metrics, and by estimating the model's generalization under an industryprovided scheme of absolute error thresholds. The proposed hybrid model competes with baseline persistence models, tree-based regression ensembles, and the Prophet model, managing to outperform them, presenting both lower error rates and more favorable error distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.