ObjectiveTo systematically review the biomechanical deficits after ACL reconstruction (ACLR) during single leg hop for distance (SLHD) testing and report these differences compared with the contralateral leg and with healthy controls.DesignSystematic review with meta-analysis.Data sourcesA systematic search in Pubmed (Ovid), EMBASE, CINAHL, Scopus, Web of Science, PEDro, SPORTDiscus, Cochrane Library, grey literature and trial registries, was conducted from inception to 1 April 2018.Eligibility criteria for selecting studiesStudies reporting kinematic, kinetic and/or electromyographic data of the ACLR limb during SLHD with no language limits.ResultsThe literature review yielded 1551 articles and 19 studies met the inclusion criteria. Meta-analysis revealed strong evidence of lower peak knee flexion angle and knee flexion moments during landing compared with the uninjured leg and with controls. Also, moderate evidence (with large effect size) of lower knee power absorption during landing compared with the uninjured leg. No difference was found in peak vertical ground reaction force during landing. Subgroup analyses revealed that some kinematic variables do not restore with time and may even worsen.ConclusionDuring SLHD several kinematic and kinetic deficits were detected between limbs after ACLR, despite adequate SLHD performance. Measuring only hop distance, even using the healthy leg as a reference, is insufficient to fully assess knee function after ACLR.PROSPERO trial registration number CRD42018087779.
ObjectivesVertical jump performance (height) is a more representative metric for knee function than horizontal hop performance (distance) in healthy individuals. It is not known what the biomechanical status of athletes after anterior cruciate ligament (ACL) reconstruction (ACLR) is at the time they are cleared to return to sport (RTS) or whether vertical performance metrics better evaluate knee function.MethodsStandard marker-based motion capture and electromyography (EMG) were collected from 26 male athletes cleared to RTS after ACLR and 22 control healthy subjects during single leg vertical jumps (SLJ) and single leg drop jumps (SLDJ). Performance outcomes, jump height and the Reactive Strength Index, were calculated. Sagittal plane kinematics, joint moments and joint work were obtained using inverse dynamics and lower limb muscle forces were computed using an EMG-constrained musculoskeletal model. Muscle contribution was calculated as a percentage of the impulse of all muscle forces in the model. Between-limb and between-group differences were explored using mixed models analyses.ResultsJump performance, assessed by jump height and Reactive Strength Index, was significantly lower in the involved than the uninvolved limb and controls, with large effect sizes. For the ACLR group, jump height limb symmetry index was 83% and 77% during the SLJ and SLDJ, respectively. Work generation was significantly less in the involved knee compared to uninvolved limb and controls during the SLJ (p<0.001; d=1.19; p=0.003, d=0.91, respectively) and during the SLDJ (p<0.001; d=1.54; p=0.002, d=1.05, respectively). Hamstrings muscle contribution was greater in the involved compared to the uninvolved limb and controls, whereas soleus contribution was lower in the involved limb compared to controls.ConclusionsDuring vertical jumps, male athletes after ACLR at RTS still exhibit knee biomechanical deficits, despite symmetry in horizontal functional performance and strength tests. Vertical performance metrics like jump height and RSI can better identify interlimb asymmetries than the more commonly used hop distance and should be included in the testing battery for the RTS.
BackgroundWe evaluated the lower limb status of athletes after anterior cruciate ligament reconstruction (ACLR) during the propulsion and landing phases of a single leg hop for distance (SLHD) task after they had been cleared to return to sport. We wanted to evaluate the biomechanical components of the involved (operated) and uninvolved legs of athletes with ACLR and compare these legs with those of uninjured athletes (controls).MethodsWe captured standard video-based three-dimensional motion and electromyography (EMG) in 26 athletes after ACLR and 23 healthy controls during SLHD and calculated lower limb and trunk kinematics. We calculated lower limb joint moments and work using inverse dynamics and computed lower limb muscle forces using an EMG-constrained musculoskeletal modelling approach. Between-limb (within ACLR athletes) and between-group differences (between ACLR athletes and controls) were evaluated using paired and independent sample t-tests, respectively.ResultsSignificant differences in kinematics (effect sizes ranging from 0.42 to 1.56), moments (0.39 to 1.08), and joint work contribution (0.55 to 1.04) were seen between the involved and uninvolved legs, as well as between groups. Athletes after ACLR achieved a 97%±4% limb symmetry index in hop distance but the symmetry in work done by the knee during propulsion was only 69%. During landing, the involved knee absorbed less work than the uninvolved, while the uninvolved knee absorbed more work than the control group. Athletes after ACLR compensated for lower knee work with greater hip work contribution and by landing with more hip flexion, anterior pelvis tilt, and trunk flexion.ConclusionSymmetry in performance on a SLHD test does not ensure symmetry in lower limb biomechanics. The distance hopped is a poor measure of knee function, and largely reflects hip and ankle function. Male athletes after ACLR selectively unload the involved limb but outperform controls on the uninvolved knee.
Background: Single-leg vertical and horizontal hop tests are commonly used to assess performance of healthy athletes and as a measure of progress during rehabilitation from knee injury. It is unclear if they measure similar aspects of leg function, as the relative joint contributions of the hip, knee, and ankle joints during propulsion and landing are unknown. Hypothesis: The proportion of work done by the hip, knee, and ankle will not be the same for these 2 jump types and will vary for propulsive and landing phases. Study Design: Cross-sectional cohort study. Level of Evidence: Level 3. Methods: Twenty physically active participants completed instrumented single-leg hop analysis in both vertical and horizontal directions. Joint peak power, work generated or absorbed, and percentage contribution of each joint during propulsive and landing phases were compared between tasks using paired t tests. Results: Vertical hop was performed with roughly similar contributions of the hip, knee, and ankle for both propulsion (31%, 34%, 35%, respectively) and landing (29%, 34%, 37%, respectively). Horizontal hop distance was mostly (87%) determined by the hip and ankle (44% and 43%), but landing was mostly (65%) performed by the knee with lesser contribution from the hip and ankle (24% and 11%). Propulsive phase showed a proximal-to-distal temporal sequence for both hop types, but landing was more complex. Conclusion: Performance during vertical and horizontal hops (jump height and jump distance, respectively) measures different aspects of hip, knee, and ankle function during the propulsive and landing phases. Clinical Relevance: Assessment of knee joint function during rehabilitation should not be done using a horizontal hop. The knee contributes about a third to vertical hop height, but only about an eighth to horizontal hop distance. Practitioners carrying out performance testing using either vertical or horizontal hops should be mindful of the relative contributions for meaningful training inferences to be derived.
Purpose The evaluation of measurement properties such as reliability, measurement error, construct validity, and responsiveness provides information on the quality of the scale as a whole, rather than on an item level. We aimed to synthesize the measurement properties referring to reliability, measurement error, construct validity, and responsiveness of the Victorian Institute of Sport Assessment questionnaires (Achilles tendon—VISA-A, greater trochanteric pain syndrome—VISA-G, proximal hamstring tendinopathy—VISA-H, patellar tendon—VISA-P). Methods A systematic review was conducted according to Consensus-based Standards for the Selection of Health Measurement Instruments methodology (COSMIN). PubMed, Cochrane, CINAHL, EMBASE, Web of Science, SportsDiscus, grey literature, and reference lists were searched. Studies assessing the measurement properties concerning reliability, validity, and responsiveness of the VISA questionnaires in patients with lower limb tendinopathies were included. Two reviewers assessed the methodological quality of studies assessing reliability, validity, and responsiveness using the COSMIN guidelines and the evidence for these measurement properties. A modified Grading of Recommendations Assessment Development and Evaluation (GRADE) approach was applied to the evidence synthesis. Results There is moderate-quality evidence for sufficient VISA-A, VISA-G, and VISA-P reliability. There is moderate-quality evidence for sufficient VISA-G and VISA-P measurement error, and high-quality evidence for sufficient construct validity for all the VISA questionnaires. Furthermore, high-quality evidence exists with regard to VISA-A for sufficient responsiveness in patients with insertional Achilles tendinopathy following conservative interventions. Conclusions Sufficient reliability, measurement error, construct validity and responsiveness were found for the VISA questionnaires with variable quality of evidence except for VISA-A which displayed insufficient measurement error. Level of evidence IV. Registration details Prospero (CRD42018107671); PROSPERO reference—CRD42019126595.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.