A full list of affiliations appears at the end of the paper. 'N euroglia' or 'glia' are collective terms describing cells of neuroepithelial (oligodendrocytes, astrocytes, oligodendrocyte progenitor cells, ependymal cells), neural crest (peripheral glia), and myeloid (microglia) origin. Changes in neuroglia associated with diseases of the CNS have been noted, characterized, and conceptualized from the very dawn of neuroglial research. Rudolf Virchow, in a lecture to students and medical doctors in 1858, stressed that 'this very interstitial tissue [that is, neuroglia] of the brain and spinal marrow is one of the most frequent seats of morbid change... ' 1. Changes in the shape, size, or number of glial cells in various pathological contexts have been frequently described by prominent neuroanatomists 2. In particular, hypertrophy of astrocytes was recognized very early as an almost universal sign of CNS pathology: 'the protoplasmic glia elements [that is, astrocytes] are really the elements which exhibit a morbid hypertrophy in pathological conditions' 3. Neuroglial proliferation was thought to accompany CNS lesions, leading to early suggestions that proliferating glia fully replaced damaged neuronal elements 4. Thus, a historical consensus was formed that a change in 'the appearance of neuroglia serves as a delicate indicator of the action of noxious influences upon the central nervous system, ' and the concept of 'reactionary change or gliosis' was accepted 5. While the origin of 'gliosis' is unclear (glia + osis in Greek means 'glial condition or process'; in Latin the suffix-osis acquired the additional meaning of 'disease'; hence 'astrogliosis'
A form of learning in the marine mollusk Aplysia, long-term sensitization of the gill- and siphon-withdrawal reflex, results in the formation of new synaptic connections between the presynaptic siphon sensory neurons and their target cells. These structural changes can be mimicked, when the cells are maintained in culture, by application of serotonin, an endogenous facilitating neurotransmitter in Aplysia. A group of cell surface proteins, designated Aplysia cell adhesion molecules (apCAM's) was down-regulated in the sensory neurons in response to serotonin. The deduced amino acid sequence obtained from complementary DNA clones indicated that the apCAM's are a family of proteins that seem to arise from a single gene. The apCAM's are members of the immunoglobulin class of cell adhesion molecules and resemble two neural cell adhesion molecules, NCAM and fasciclin II. In addition to regulating newly synthesized apCAM, serotonin also altered the amount of preexisting apCAM on the cell surface of the presynaptic sensory neurons. By contrast, the apCAM on the surface of the postsynaptic motor neuron was not modulated by serotonin. This rapid, transmitter-mediated down-regulation of a cell adhesion molecule in the sensory neurons may be one of the early molecular changes in long-term synaptic facilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.