Blood flow simulation of complex arterial networks in three-dimensions generally involves assigning multiple inlets and outlets. This work investigates different kinds of boundary condition assigned on inlets and outlets in the Circle of Willis. These boundary conditions will be adopted in a way that a realistic velocity profile and pressure in the main brain arteries are achieved. The result of this work will be used for Fluid-structure interaction simulations. As the force applied on the artery wall depends on the blood pressure, the goal is to achieve a pressure boundary condition based on the in-vivo flow rates in each artery.
Active flow control of canonical laminar separation bubbles by steady and harmonic vortex generator jets (VGJs) was investigated using direct numerical simulations. Both control strategies were found to be effective in controlling the laminar boundary-layer separation. However, the present results indicate that using the same blowing amplitude, harmonic VGJs were more effective and efficient at reducing the separated region than the steady VGJs considering the fact that the harmonic VGJs use less momentum than the steady case. For steady VGJs, longitudinal structures forming immediately downstream of the injection location led to the formation of hairpin-type vortices, causing an earlier transition to turbulence. Symmetric hairpin vortices were shown to develop downstream of the forcing location for the harmonic VGJs, as well. However, the increased control effectiveness for harmonic VGJs’ flow control strategy is attributed to the fact that the shear-layer instability mechanism was exploited. As a result, disturbances introduced by VGJs were strongly amplified, leading to the development of large-scale coherent structures, which are very effective at increasing the momentum exchange, thus limiting the separated region.
This work deals with the modelling and simulation of a degassing process mainly used for extruders in polymer industry. The numerical simulations are done with finite-volume method using OpenFOAM for a 2D single screw extruder. The material parameters have been all chosen for a PDMS-Pentane polymer mixture so that the results could be compared with the available experiments already performed for this mixture [1]. In addition to experiments, the numerical results will be compared with an analytical solution derived from Danckwerts' model [2] [3].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.