Abstract. We investigate how evaporation changes depending on the scales in the Altiplano region of the Atacama Desert. More specifically, we focus on the temporal evolution from the climatological to the sub-diurnal scales on a high-altitude saline lake ecosystem. We analyze the evaporation trends over 70 years (1950–2020) at a high-spatial resolution. The method is based on the downscaling of 30 km ERA5 reanalysis data at hourly resolution to 0.1 km spatial resolution data, using artificial neural networks to analyze the main drivers of evaporation. To this end, we use the Penman open-water evaporation equation, modified to compensate for the energy balance non-closure and the ice cover formation on the lake during the night. Our estimation of the hourly climatology of evaporation shows a consistent agreement with eddy-covariance (EC) measurements and reveals that evaporation is controlled by different drivers depending on the time scale. At the sub-diurnal scale, mechanical turbulence is the primary driver of evaporation, and at this scale, it is not radiation-limited. At the seasonal scale, more than 70 % of the evaporation variability is explained by the radiative contribution term. At the same scale, and using a large-scale moisture tracking model, we identify the main sources of moisture to the Chilean Altiplano. In all cases, our regime of precipitation is controlled by large-scale weather patterns closely linked to climatological fluctuations. Moreover, seasonal evaporation significantly influences the saline lake surface spatial changes. From an interannual scale perspective, evaporation increased by 2.1 mm yr−1 during the entire study period, according to global temperature increases. Finally, we find that yearly evaporation depends on the El Niño–Southern Oscillation (ENSO), where warm and cool ENSO phases are associated with higher evaporation and precipitation rates, respectively. Our results show that warm ENSO phases increase evaporation rates by 15 %, whereas cold phases decrease it by 2 %.
This study assessed Saharan dust events (SDE) passing over the Valencian Community (VC; eastern Spain) during the period of 2014-2017 by investigating the following topics: a) the occurrence of SDE and their impact on PM 10 mass concentrations, b) the identification of the favorable synoptic patterns at 850 hPa associated with SDE via cluster analysis and c) the applicability of the gamma probability density function (PDF) in fitting the mass contributions of SDE. We determined that these events affect the VC on ~26% of the days of the year, thereby contributing 3.3 µg m-3 (~23%) to the average PM 10 concentration. Five circulation scenarios were identified. In Scenario 1 (17.4%), the transport of Saharan dust was due to the combination of a trough situated over the southwest of the Iberian Peninsula and a high-pressure system centered on western Algeria, Tunisia and eastern Libya. According to the PDF analysis, SDE characterized by this type of pattern were the most likely to substantially increase PM 10 mass concentrations. In Scenarios 3 (39.2%) and 5 (19.4%), which contributed to high concentrations of mineral dust in the VC, a high-pressure system was located over North Africa. Scenarios 1, 3 and 5 occurred more frequently during summer, especially Scenario 3 (69%). On the other hand, Scenarios 2 (16.2%) and 4 (7.2%), both characterized by a deep low over the west or northwest of the Iberian Peninsula, typically arose during spring and, to a lesser extent, winter. These two scenarios displayed a lower probability of elevating mineral dust levels in the study area.
Abstract. We investigate how evaporation changes depending on the scales in the Altiplano region of the Atacama Desert. More specifically, the temporal evolution from the climatological to the sub-diurnal scales on a high-altitude saline lake ecosystem. We analyse the evaporation trends over 70 years (1950–2020) at a high-spatial resolution. The method is based on the downscaling of 30-km hourly resolution ERA5 reanalysis data to 0.1-km spatial resolution data, using artificial neural networks to analyze the main drivers of evaporation. To this end, we use the Penman open water evaporation equation, modified to compensate for the energy balance non-closure and the ice cover formation on the lake during the night. Our estimation of the hourly climatology of evaporation shows a consistent agreement with eddy-covariance measurements and reveals that evaporation is controlled by different drivers depending on the time scale. At the sub-diurnal scale, mechanical turbulence is the primary driver of evaporation, and at this scale, it is not radiation-limited. At the seasonal scale, more than 70 % of the evaporation variability is explained by the radiative contribution term. At the same scale, and using a large-scale moisture tracking model, we identify the main sources of moisture to the Chilean Altiplano. In all cases, our regime of precipitation is controlled by large-scale weather patterns closely linked to climatological fluctuations. Moreover, seasonal evaporation influences significantly the saline lake surface spatial changes. From an interannual scale perspective, evaporation increased by 2.1 mm per year during the entire study period, according to global temperature increases. Finally, we find that yearly evaporation depends on the El Niño Southern Oscillation (ENSO), where warm and cool ENSO phases are associated with higher evaporation and precipitation rates, respectively. Our results show that warm ENSO phases increase evaporation rates by 15 %, whereas cold phases decrease it by 2 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.