Human pregnancy is characterized by insulin resistance, traditionally attributed to the effects of placental hormones. Normal pregnancy-induced insulin resistance is further enhanced in pregnancy complications, associated with disturbed placental function, such as gestational diabetes mellitus, preeclampsia, and intrauterine growth restriction. Compelling evidence suggests that these pregnancy disorders are associated with future development of maternal metabolic syndrome. However, the pathogenetic mechanisms underlying the association between abnormal placental development, insulin resistance, and maternal metabolic syndrome are not fully understood. A large body of evidence has recently supported the role of adipose tissue in the regulation of insulin resistance in both nonpregnant and pregnant participants. In this respect, adipocytokines, which are adipocyte-derived hormones, have been implicated in the regulation of maternal metabolism and gestational insulin resistance. Adipocytokines, including leptin, adiponectin, tumor necrosis factor alpha, interleukin 6, as well as the newly discovered resistin, visfatin, and apelin, are also known to be produced within the intrauterine environment. However, data concerning the pattern of adipocytokines secretion in normal and complicated pregnancies are still limited and partially contradictory. Given the importance of adipose tissue and its hormones in terms of adequate metabolic control and energy homeostasis, we present a review of published data related to the role of adipocytokines in pregnancy, especially in relation to pregnancy complications. Focus will be placed on the functions and other potential roles of the novel adipocytokines resistin, visfatin, and apelin.
Intrauterine growth restriction (IUGR) is the failure of the fetus to achieve his/her intrinsic growth potential, due to anatomical and/or functional disorders and diseases in the feto-placental-maternal unit. IUGR results in significant perinatal and long-term complications, including the development of insulin resistance/metabolic syndrome in adulthood.The thrifty phenotype hypothesis holds that intrauterine malnutrition leads to an adaptive response that alters the fetal metabolic and hormonal milieu designed for intrauterine survival. This fetal programming predisposes to an increased susceptibility for chronic diseases. Although the mechanisms controlling intrauterine growth are poorly understood, adipose tissue may play an important role in linking poor fetal growth to the subsequent development of adult diseases. Adipose tissue secretes a number of hormones, called adipocytokines, important in modulating metabolism and recently involved in intrauterine growth.This review aims to summarize reported findings concerning the role of adipocytokines (leptin, adiponectin, ghrelin, tumor necrosis factor (TNF), interleukin-6 (IL6), visfatin, resistin, apelin) in early life, while attempting to speculate mechanisms through which differential regulation of adipocytokines in IUGR may influence the risk for development of chronic diseases in later life.
Pathologic conditions in pregnancy that lead to intrauterine growth restriction could be responsible for elevated maternal visfatin levels. Higher visfatin levels in neonates with intrauterine growth restriction may serve as an early marker with prognostic value for later development of insulin resistance or type 2 diabetes, whereas lower insulin levels may indicate reduced beta-cell mass and/or impaired beta-cell function.
The term intrauterine growth restriction (IUGR) is assigned to newborns with a birth weight and/or birth length below the 10th percentile for their gestational age and whose abdominal circumference is below the 2.5th percentile with pathologic restriction of fetal growth. IUGR is usually due to maternal, fetal, or placental factors. However, many IUGR cases have unknown underlying cause. Recent studies focus on new factors that can influence fetal development and birth outcome like the timing and the type of fetal nutrition, maternal psychosocial stress and personality variables, 11beta-hydroxysteroid dehydrogenase type 2 placental activity, the activity of the neuroendocrine system that mediates the effects of psychosocial stress, and the role of proinflammatory cytokines and of oxidative stress. Data have shown that IUGR is associated with a late life increased prevalence of metabolic syndrome, a condition associating obesity with hypertension, type 2 diabetes mellitus (DM2), and cardiovascular disease. Recent data demonstrated that the diabetes-associated mortality appears to be disproportionately concentrated among individuals of abnormal birth weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.