Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.
Cell function depends on the collective activity of protein networks within which a few proteins, called hubs, participate in a large number of interactions. Dynein light chain LC8, first discovered as a subunit of the motor protein dynein, is considered to have a role broader than dynein and its participation in diverse systems fits the description of a hub. Among its partners is Swallow with which LC8 is essential for proper localization of bicoid mRNA at the anterior cortex of Drosophila oocytes. Why LC8 is essential in this process is not clear, but emerging evidence suggests that LC8 functions by promoting self-association and/or structural organization of its diverse binding partners. This work addresses the mechanistic and structural features of LC8-induced Swallow self-association distant from LC8 binding. Mutational design based on a hypothetical helical wheel, inter-monomer NOEs assigned to residues expected at interface positions and circular dichroism spectral characteristics indicate that the LC8-promoted dimer of Swallow is a coiled-coil. Secondary chemical shifts and 15N backbone relaxation identify the boundaries and distinguishing structural features of the coiled-coil. Thermodynamic analysis of Swallow polypeptides designed to decouple self-association from LC8 binding reveals that the higher binding affinity of the engineered bivalent Swallow is of purely entropic origin and that the linker separating the coiled-coil from the LC8 binding site remains disordered. We speculate that the LC8-promoted coiled-coil is critical for bicoid mRNA localization because it could induce structural organization of Swallow, which except for the central LC8-promoted coiled-coil is primarily disordered.
Protein acetylation is mediated by histone deacetylases (HDACs) and acetyltransferases, which influence chromatin dynamics, protein turnover, and the DNA damage response. HDACs overexpressed in cancer cells have been implicated in protecting against genotoxic insults, whereas HDAC inhibitors circumvent this protection (Rajendran et al. Clin Epigenetics 2011,3:4). Here, we show in human colon cancer cells that sulforaphane and related isothiocyanates (ITCs) inhibited HDAC activity and increased HDAC protein turnover, with the potency directly proportional to alkyl chain length. Under these conditions, DNA damage signaling was triggered by ATR kinases, leading to increased double-strand breaks and histone (H2AX) phosphorylation. Activation of checkpoint kinase-2 was followed by growth arrest and cell death. HDAC inhibition by ITCs enhanced the acetylation of repair proteins, like CtIP, leading to their degradation. Notably, cancer cells were more susceptible than normal cells, the latter exhibiting efficient double-strand-break processing and repair. Thus, dietary ITCs preferentially exploit the HDAC turnover pathways, faulty DNA repair mechanisms, and genomic instability in cancer cells. Supported by NIH grants CA090890, CA65525, CA122906, CA122959, CA80176, and ES007060. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr LB-184. doi:1538-7445.AM2012-LB-184
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.