The 2D Raman-terahertz (THz) response of liquid water is studied in dependence of temperature and isotope substitution (H 2 O, D 2 O, and H 18 2 O). In either case, a very short-lived (i.e., between 75 and 95 fs) echo is observed that reports on the inhomogeneity of the low-frequency intermolecular modes and hence, on the heterogeneity of the hydrogen bond networks of water. The echo lifetime slows down by about 20% when cooling the liquid from room temperature to the freezing point. Furthermore, the echo lifetime of D 2 O is 6.5 ± 1% slower than that of H 2 O, and both can be mapped on each other by introducing an effective temperature shift of ∆T = 4.5 ± 1 K. In contrast, the temperature-dependent echo lifetimes of H 18 2 O and H 2 O are the same within error. D 2 O and H 18 2 O have identical masses, yet H 18 2 O is much closer to H 2 O in terms of nuclear quantum effects. It is, therefore, concluded that the echo is a measure of the structural inhomogeneity of liquid water induced by nuclear quantum effects.water | multidimensional spectroscopy | THz spectroscopy | nuclear quantum effects
Hybrid 2D Raman-THz spectroscopy with the Raman-THz-THz (RTT) pulse sequence is used to explore the ultrafast intra-and intermolecular degrees of freedom of liquid bromoform (CHBr3) in the frequency range of 1-8 THz. Cross peaks observed in these 2D spectra are assigned to the coupling between the narrow intramolecular modes of the molecules and the much broader intermolecular degrees of freedom of the liquid. This assignment is based on the frequency position of the crosspeaks, however, it is shown that these frequency positions can be deduced accurately only when properly taking into account the convolution of the molecular response with the instrument response function of the experimental setup, the latter of which distorts the 2D spectra considerably. The assignment is backed up with additional experiments on diiodomethane (CH2I2), which has only one intramolecular mode in the frequency range of the experiment, and hence excludes the possibility of intramolecular couplings.
In the work of Savolainen et al. [Nat. Chem. 6, 697 (2014)], we studied the excess (hydrated) electron in water with the help of transient THz spectroscopy, which is a sensitive probe of its delocalization length. In that work, we used laser pulses at 800 nm, 400 nm, and 267 nm for photoionization. While the detachment mechanism for 400 nm and 267 nm is complicated and requires a concerted nuclear rearrangement, we provided evidence that 800 nm pumping excites the excess electron directly and vertically into the conduction band, despite a highly nonlinear field-ionization process. In the present note, we extend that work to 200 nm pumping, which provides a much cleaner way to reach the conduction band. We show that the detachment pathways upon 200 nm and 800 nm pumping are in essence the same, as indicated by the same initial size of the electron wavefunction and the same time scales for the collapse of the wavefunction and geminate recombination.
Two-dimensional (2D) Raman-THz spectroscopy in the frequency up to 7 THz has been applied to study the crystalline beta-phase of bromoform (CHBr3). As for liquid CHBr3, cross peaks are observed, which however sharpen up in the crystalline sample and split into assignable sub-contributions. In the Raman dimension, the frequency positions of these cross peaks coincide with the intramolecular bending modes of the CHBr3 molecules, and in the THz dimension with the IR active lattice modes of the crystal. This work expands the applicability of this new 2D spectroscopic technique to solid samples at cryogenic temperatures. Furthermore, it provides new experimental evidence that the cross peaks indeed originate from the coupling between intra- and intermolecular vibrational modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.