One-bit quantization has attracted considerable attention in signal processing for communications and sensing. The arcsine law is a useful relation often used to estimate the normalized covariance matrix of zero-mean stationary input signals when they are sampled by one-bit analog-to-digital converters (ADCs)-practically comparing the signals with a given threshold level. This relation, however, only considers a zero threshold which can cause a remarkable information loss. For the first time in the literature, this paper introduces an approach to extending the arcsine law to the case where one-bit ADCs apply time-varying thresholds. In particular, the proposed method is shown to accurately recover the variance and autocorrelation of the stationary signals of interest.
The classical problem of phase retrieval has found a wide array of applications in optics, imaging and signal processing. In this paper, we consider the phase retrieval problem in a one-bit setting, where the signals are sampled using one-bit analog-to-digital converters (ADCs). A significant advantage of deploying one-bit ADCs in signal processing systems is their superior sampling rates as compared to their high-resolution counterparts. This leads to an enormous amount of one-bit samples gathered at the output of the ADC in a short period of time. We demonstrate that this advantage pays extraordinary dividends when it comes to convex phase retrieval formulations—namely that the often encountered matrix semi-definiteness constraints as well as rank constraints (that are computationally prohibitive to enforce), become redundant for phase retrieval in the face of a growing sample size. Several numerical results are presented to illustrate the effectiveness of the proposed methodologies
The recovery of the input signal covariance values from its one-bit sampled counterpart has been deemed a challenging task in the literature. To deal with its difficulties, some assumptions are typically made to find a relation between the input covariance matrix and the autocorrelation values of the one-bit sampled data. This includes the arcsine law and the recently proposed modified arcsine law which unleashes a promising performance in covariance recovery by taking advantage of time-varying sampling thresholds. However, the modified arcsine law also assumes input signals are stationary, which is typically a simplifying assumption for real-world applications. In fact, in many signal processing applications, the input signals are readily known to be non-stationary with a non-Toeplitz covariance matrix. In this paper, we propose an approach to extending the arcsine law to the case where one-bit ADCs apply time-varying thresholds while dealing with input signals that originate from a non-stationary process. In particular, the recovery methods are shown to accurately recover the time-varying variance and autocorrelation values. Furthermore, we extend the formulation of the Bussgang law to the case where non-stationary input signals are considered.
One-bit quantization, which relies on comparing the signals of interest with given threshold levels, has attracted considerable attention in signal processing for communications and sensing. A useful tool for covariance recovery in such settings is the arcsine law, that estimates the normalized covariance matrix of zero-mean stationary input signals. This relation, however, only considers a zero sampling threshold, which can cause a remarkable information loss. In this paper, the idea of the arcsine law is extended to the case where one-bit analog-to-digital converters (ADCs) apply time-varying thresholds. Specifically, three distinct approaches are proposed, investigated, and compared, to recover the autocorrelation sequence of the stationary signals of interest. Additionally, we will study a modification of the Bussgang law, a famous relation facilitating the recovery of the cross-correlation between the one-bit sampled data and the zero-mean stationary input signal. Similar to the case of the arcsine law, the Bussgang law only considers a zero sampling threshold. This relation is also extended to accommodate the more general case of time-varying thresholds for the stationary input signals.
One-bit quantization, which relies on comparing the signals of interest with given threshold levels, has attracted considerable attention in signal processing for communications and sensing. A useful tool for covariance recovery in such settings is the arcsine law, that estimates the normalized covariance matrix of zero-mean stationary input signals. This relation, however, only considers a zero sampling threshold, which can cause a remarkable information loss. In this paper, the idea of the arcsine law is extended to the case where one-bit analog-to-digital converters (ADCs) apply time-varying thresholds. Specifically, three distinct approaches are proposed, investigated, and compared, to recover the autocorrelation sequence of the stationary signals of interest. Additionally, we will study a modification of the Bussgang law, a famous relation facilitating the recovery of the cross-correlation between the one-bit sampled data and the zero-mean stationary input signal. Similar to the case of the arcsine law, the Bussgang law only considers a zero sampling threshold. This relation is also extended to accommodate the more general case of time-varying thresholds for the stationary input signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.