Mediolateral balance control during walking is a challenging task in post-stroke hemiparetic individuals. To detect and treat dynamic balance disorders, it is important to assess balance using reliable methods. The Berg Balance Scale (BBS), Dynamic Gait Index (DGI), margin-of-stability (MoS), and peak-to-peak range of angular-momentum (H) are some of the most commonly used measures to assess dynamic balance and fall risk in clinical and laboratory settings. However, it is not clear if these measures lead to similar conclusions. Thus, the purpose of this study was to assess dynamic balance in post-stroke hemiparetic individuals using BBS, DGI, MoS and the range of H and determine if these measure are correlated. BBS and DGI were collected from 19 individuals post-stroke. Additionally, kinematic and kinetic data were collected while the same individuals walked at their self-selected speed. MoS and the range of H were calculated in the mediolateral direction for each participant. Correlation analyses revealed moderate associations between all measures. Overall, a higher range of angular-momentum was associated with a higher MoS, wider step width and lower BBS and DGI scores, indicating poor balance control. Further, only the MoS from the paretic foot placement, but not the nonparetic foot, correlated with the other balance measures. Although moderate correlations existed between all the balance measures, these findings do not necessarily advocate the use of a single measure as each test may assess different constructs of dynamic balance. These findings have important implications for the use and interpretation of dynamic balance assessments.
Background In post-stroke hemiparetic subjects, solid polypropylene ankle-foot-orthoses are commonly prescribed to assist in foot clearance during swing while bracing the ankle during stance. Mobility demands, such as changing walking speed and direction, are accomplished by accelerating or decelerating the body and maintaining dynamic balance. Previous studies have shown that the ankle plantarflexors are primary contributors to these essential biomechanical functions. Thus, with ankle-foot-orthoses limiting ankle motion and plantarflexor output during stance, execution of these walking subtasks may be compromised. This study examined the influence of a solid polypropylene ankle-foot-orthosis on forward propulsion and dynamic balance in healthy adults. Methods Kinematic and kinetic data were recorded from 10 healthy adults walking with and without a unilateral ankle-foot-orthosis at steady-state slow (0.6 m/s) and moderate (1.2 m/s) speeds, and during accelerated (0–1.8m/s at 0.06 m/s2) and decelerated (1.8–0m/s at −0.06 m/s2) walking. Propulsion was quantified by propulsive and braking impulses (i.e., time integral of the anterior–posterior ground reaction force) while dynamic balance was quantified by the peak-to-peak range of whole-body angular momentum. Findings The propulsive impulses decreased in the leg with ankle-foot-orthosis compared to the contralateral leg and no ankle-foot-orthosis condition. Further, the ankle-foot-orthosis resulted in a greater range of angular momentum in both the frontal and sagittal planes, which were correlated with the reduced peak hip abduction and reduced ankle plantarflexor moments, respectively. Interpretation Solid ankle-foot-orthoses limit the successful execution of important mobility subtasks in healthy adults and that the prescription of ankle-foot-orthosis should be carefully considered.
Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation.
Walking can be exceedingly complex to analyze due to highly nonlinear multibody dynamics, nonlinear relationships between muscle excitations and resulting muscle forces, dynamic coupling that allows muscles to accelerate joints and segments they do not span, and redundant muscle control. Walking requires the successful execution of a number of biomechanical functions such as providing body support, forward propulsion, and balance control, with specific muscle groups contributing to their execution. Thus, muscle injury or neurological impairment that affects muscle output can alter the successful execution of these functions and impair walking performance. The loss of balance control in particular can result in falls and subsequent injuries that lead to the loss of mobility and functional independence. Thus, it is important to assess the mechanisms used to control balance in clinical populations using reliable methods with the ultimate goal of improving rehabilitation outcomes. In this review, we highlight common clinical and laboratory-based measures used to assess balance control and their potential limitations, show how these measures have been used to analyze balance in several clinical populations, and consider the translation of specific laboratory-based measures from the research laboratory to the clinic.
Background: While over half of stroke survivors recover the ability to walk without assistance, deficits persist in the performance of walking adaptations necessary for safe mobility in the home and community. One such adaptation is the ability to walk or step backward. Post-stroke rehabilitation rarely includes assessment of backward walking (BW) and BW deficits have not been quantified in post-stroke community ambulators. Objective: To quantify spatiotemporal and kinematic BW characteristics in post-stroke community ambulators and compare their performance to healthy older adults. Methods: Individuals post-stroke (n=15, 60.1±12.9 years, forward speed: 1.13±0.23 m/s) and healthy adults (n=12, 61.2±16.2 years, forward speed: 1.40±0.13 m/s) performed forward walking (FW) and BW during a single session. Step characteristics and peak lower extremity joint angles were extracted using 3D motion analysis and analyzed with mixed-method ANOVAs (group, walking condition). Results: The stroke group demonstrated greater reductions in speed, step length and cadence and a greater increase in double-support time during BW compared to FW (p<.01). Compared to FW, the post-stroke group demonstrated greater reductions in hip extension and knee flexion during BW (p<.05). The control group demonstrated decreased plantarflexion and increased dorsiflexion during BW, but these increases were attenuated in the post-stroke group (p<.05). Conclusions: Assessment of BW can unmask post-stroke walking impairments not detected during typical FW. BW impairments may contribute to the difficulties reported
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.