Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MTdynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/ KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MTflux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MTdepolymerization and regulate spindle length.
We have investigated the hematopoietic phenotype of mice with a hypomorphic mutation in the Brca2/Fancd1 gene (Brca2(Delta27/Delta27) mutation). In contrast to observations made in other Fanconi anemia (FA) mouse models, low numbers of hematopoietic colony-forming cells (CFCs) were noted in Brca2(Delta27/Delta27) mice, either young or adult. Additionally, a high incidence of spontaneous chromosomal instability was observed in Brca2(Delta27/Delta27) bone marrow (BM) cells, but not in Brca2(+/Delta27) or Fanca(-/-) BM cells. Although Brca2(Delta27/Delta27) CFCs were not hypersensitive to ionizing radiation, a very severe hematopoietic syndrome was observed in irradiated Brca2(Delta27/Delta27) mice. Conventional BM competition experiments showed a marked repopulation defect in Brca2(Delta27/Delta27) hematopoietic stem cells (HSCs), compared to wild-type HSCs. Moreover, we have observed for the first time in a DNA repair disease model a very significant proliferation defect in Brca2(Delta27/Delta27) HSCs maintained in their natural physiological environment. The progressive repopulation of wild-type HSCs transplanted into unconditioned Brca2(Delta27/Delta27) recipients is reminiscent of the somatic mosaicism phenomenon observed in a number of genetic diseases, including FA. The hematopoietic phenotype associated with the Brca2(Delta27/Delta27) mutation suggests that this FA-D1 mouse model will constitute an important tool for the development of new therapies for FA, including gene therapy.
The SMC5/6 complex is the least understood of SMC complexes. In yeast, smc5/6 mutants phenocopy mutations in sgs1, the BLM ortholog that is deficient in Bloom's syndrome (BS). We here show that NSMCE2 (Mms21, in Saccharomyces cerevisiae), an essential SUMO ligase of the SMC5/6 complex, suppresses cancer and aging in mice. Surprisingly, a mutation that compromises NSMCE2-dependent SUMOylation does not have a detectable impact on murine lifespan. In contrast, NSMCE2 deletion in adult mice leads to pathologies resembling those found in patients of BS. Moreover, and whereas NSMCE2 deletion does not have a detectable impact on DNA replication, NSMCE2-deficient cells also present the cellular hallmarks of BS such as increased recombination rates and an accumulation of micronuclei. Despite the similarities, NSMCE2 and BLM foci do not colocalize and concomitant deletion of Blm and Nsmce2 in B lymphocytes further increases recombination rates and is synthetic lethal due to severe chromosome mis-segregation. Our work reveals that SUMO-and BLM-independent activities of NSMCE2 limit recombination and facilitate segregation; functions of the SMC5/6 complex that are necessary to prevent cancer and aging in mice.
Previous clinical trials based on the genetic correction of purified CD34(+) cells with gamma-retroviral vectors have demonstrated clinical efficacy in different monogenic diseases, including X-linked severe combined immunodeficiency, adenosine deaminase deficient severe combined immunodeficiency and chronic granulomatous disease. Similar protocols, however, failed to engraft Fanconi anemia (FA) patients with genetically corrected cells. In this study, we first aimed to correlate the hematological status of 27 FA patients with CD34(+) cell values determined in their bone marrow (BM). Strikingly, no correlation between these parameters was observed, although good correlations were obtained when numbers of colony-forming cells (CFCs) were considered. Based on these results, and because purified FA CD34(+) cells might have suboptimal repopulating properties, we investigated the possibility of genetically correcting unselected BM samples from FA patients. Our data show that the lentiviral transduction of unselected FA BM cells mediates an efficient phenotypic correction of hematopoietic progenitor cells and also of CD34(-) mesenchymal stromal cells (MSCs), with a reported role in hematopoietic engraftment. Our results suggest that gene therapy protocols appropriate for the treatment of different monogenic diseases may not be adequate for stem cell diseases like FA. We propose a new approach for the gene therapy of FA based on the rapid transduction of unselected hematopoietic grafts with lentiviral vectors (LVs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.