Actualmente el sector camaronero del Ecuador es uno de los sectores no petroleros con mayor proyección de crecimiento hacia el mercado internacional. A pesar del auge de este sector, la mayoría de los pequeños productores de camarón toman sus decisiones operativas en función del conocimiento empírico del negocio, sin considerar datos históricos ni ninguna herramienta científica como fundamento de sus decisiones. En este trabajo implementamos y comparamos técnicas de aprendizaje estadístico de vanguardia para la predicción del nivel de cosecha de camarón blanco Litopenaeus vannamei de una pequeña camaronera ubicada en la parroquia Tenguel del cantón Guayaquil, Ecuador. Datos de 35 pescas que corresponden a 7 ciclos se usaron como datos. Luego se hicieron predicciones reales de cosecha para los dos siguientes ciclos. Las técnicas comparadas son: Regresión Lineal Múltiple (RLM) por mínimos cuadrados, Árbol de Regresión CART, Bosques Aleatorios, Regresión adaptativa multivariante por tramos (MARS) y Máquinas de Soporte Vectorial (SVM). MARS sin interacciones, el modelo de RLM aditivo con selección de predictores por Best Subset Selection y SVM con Núcleo lineal produjeron un menor error de predicción por Validación Cruzada. El buen rendimiento predictivo de estos métodos fue confirmado con buenos resultados de predicción real en los dos siguientes ciclos. El uso de técnicas estadísticas de vanguardia puede ser de gran ayuda para obtener predicciones confiables, y, por tanto, para mejorar los procesos operativos de las pequeñas camaroneras.
In this work we do a short literature review on the most relevant methods for robust estimation of Principal Component Analysis (PCA). In particular, we review methods for PCA that are resistant against rowwise outliers, cellwise outliers and against both rowwise and cellwise outliers. It is well known that classical PCA breaks down in the presence of outliers. In practical applications, we suggest to fit a robust method for PCA estimation that is resistant to rowwise and cellwise outliers. We could later compare this result with the classical fit to evaluate the influence of outliers. Robust methodsfor PCA can also be used to detect outliers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.