We consider the problem of distinguishing classical (Erdős-Rényi) percolation from explosive (Achlioptas) percolation, under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed non-stationary process, where the observed graph process is corrupted by Type I and Type II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (ER) percolation is visually indistinguishable from the explosive (Achlioptas) percolation model. In this setting, we compare two different criteria for discriminating between these two percolation models, based on a quantile difference (QD) of the first component’s size and on the maximal size of the second largest component. We show through data simulations that this second criterion outperforms the QD of the first component’s size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between the ER and Achlioptas models of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for percolation detection in clinical neuroscience is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.