We report the detection of the pulsed signal of the radio-quiet magnetar-like pulsar PSR J1846-0258 in the high-energy γ-ray data of the Fermi Large Area Telescope (Fermi LAT). We produced phase-coherent timing models exploiting RXTE PCA and Swift XRT monitoring data for the post-(magnetar-like) outburst period from 2007 August 28 to 2016 September 4, with independent verification using INTEGRAL ISGRI and Fermi GBM data. Phase-folding barycentric arrival times of selected Fermi LAT events from PSR J1846-0258, resulted in a 4.2σ detection (30-100 MeV) of a broad pulse consistent in shape and aligned in phase with the profiles that we measured with Swift XRT (2.5-10 keV), INTEGRAL ISGRI (20-150 keV) and Fermi GBM (20-300 keV). The pulsed flux (30-100 MeV) is (3.91 ± 0.97) × 10 −9 photons cm −2 s −1 MeV −1 . Declining significances of the INTEGRAL ISGRI 20-150 keV pulse profiles suggest fading of the pulsed hard X-ray emission during the post-outburst epochs. We revisited with greatly improved statistics the timing and spectral characteristics of PSR B1509-58 as measured with the Fermi LAT. The broad-band pulsed emission spectra (from 2 keV up to GeV energies) of PSR J1846-0258 and PSR B1509-58 can be accurately described with similarly curved shapes, with maximum luminosities at 3.5 ± 1.1 MeV (PSR J1846-0258) and 2.23 ± 0.11 MeV (PSR B1509-58). We discuss possible explanations for observational differences between Fermi LAT detected pulsars that reach maximum luminosities at GeV energies, like the second magnetar-like pulsar PSR J1119-6127, and pulsars with maximum luminosities at MeV energies, which might be due to geometric differences rather than exotic physics in high-B fields.
Experimental developments in neutrino telescopes are drastically improving their ability to constrain the annihilation cross-section of dark matter. In this paper, we employ an angular power spectrum analysis method to probe the galactic and extra-galactic dark matter signals. First we derive projections for a next generation of neutrino telescope that is inspired by KM3NeT. We emphasise that such analysis is much less sensitive to the choice of dark matter density profile. Remarkably, the projected sensitivity is improved by more than an order of magnitude with respect to the existing limits obtained by assuming the Burkert dark matter density profile describing the galactic halo. Second, we analyse minimal extensions to the Standard Model that will be maximally probed by the next generation of neutrino telescopes. As benchmark scenarios, we consider Dirac dark matter in s- and t-channel models with vector and scalar mediators. We follow a global approach by examining all relevant complementary experimental constraints. We find that neutrino telescopes will be able to competitively probe significant portions of parameter space. Interestingly, the anomaly-free L_μ-L_τ model can potentially be explored in regions where the relic abundance is achieved through freeze-out mechanism.
The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV . In addition to a standard astrophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.
Warm dark matter (WDM) can potentially explain small-scale observations that currently challenge the cold dark matter (CDM) model, as warm particles suppress structure formation due to free-streaming effects. Observing small-scale matter distribution provides a valuable way to distinguish between CDM and WDM. In this work, we use observations from the Dark Energy Survey and PanSTARRS1, which observe 270 Milky-Way satellites after completeness corrections. We test WDM models by comparing the number of satellites in the Milky Way with predictions derived from the Semi-Analytical SubHalo Inference Modeling (SASHIMI) code, which we develop based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. We robustly rule out WDM with masses lighter than 4.4 keV at 95% confidence level for the Milky-Way halo mass of 10 12 M ⊙ . The limits are a weak function of the (yet uncertain) Milky-Way halo mass, and vary as m WDM ≳ 3.6-5.1 keV for ð0.6-2.0Þ × 10 12 M ⊙ . For the sterile neutrinos that form a subclass of WDM, we obtain the constraints of m ν s > 12 keV for the Milky-Way halo mass of 10 12 M ⊙ , independent of the mixing angle. These results based on SASHIMI do not rely on any assumptions of galaxy formation physics or are not limited by numerical resolution. The models, therefore, offer a robust and fast way to constrain the WDM models. By applying a satellite forming condition, however, we can rule out the WDM mass lighter than 9.0 keV for the Milky-Way halo mass of 10 12 M ⊙ .
Warm dark matter (WDM) can potentially explain small-scale observations that currently challenge the cold dark matter (CDM) model, as warm particles suppress structure formation due to free-streaming effects. Observing small-scale matter distribution provides a valuable way to distinguish between CDM and WDM. In this work, we use observations from the Dark Energy Survey and PanSTARRS1, which observe 270 Milky-Way satellites after completeness corrections. We test WDM models by comparing the number of satellites in the Milky Way with predictions derived from the Semi-Analytical SubHalo Inference ModelIng (SASHIMI) code, which we develop based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. We robustly rule out WDM with masses lighter than 4.4 keV at 95% confidence level for the Milky-Way halo mass of 10 12 M . The limits are a weak function of the (yet uncertain) Milky-Way halo mass, and vary as mWDM > ∼ 3.6-5.1 keV for (0.6-2.0) × 10 12 M . For the sterile neutrinos that form a subclass of WDM, we obtain the constraints of mν s > 11.6 keV for the Milky-Way halo mass of 10 12 M . These results based on SASHIMI do not rely on any assumptions of galaxy formation physics or are not limited by numerical resolution. The models, therefore, offer a robust and fast way to constrain the WDM models. By applying a satellite forming condition, however, we can rule out the WDM mass lighter than 9.0 keV for the Milky-Way halo mass of 10 12 M .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.