Focal anterior temporal lobe (ATL) degeneration often preferentially affects the left or right hemisphere. While patients with left-predominant ATL (lATL) atrophy show severe anomia and verbal semantic deficits and meet criteria for semantic variant primary progressive aphasia (svPPA) and semantic dementia, patients with early right ATL (rATL) atrophy are more difficult to diagnose as their symptoms are less well understood. Focal rATL atrophy is associated with prominent emotional and behavioral changes, and patients often meet, or go on to meet, criteria for behavioral variant frontotemporal dementia (bvFTD). Uncertainty around early symptoms and absence of an overarching clinicoanatomical framework continue to hinder proper diagnosis and care of patients with rATL disease. Here, we examine a large, well-characterized, longitudinal cohort of patients with rATL-predominant degeneration and propose new criteria and nosology. We identified individuals from our database with a clinical diagnosis of bvFTD or svPPA and a structural MRI (n = 478). Based on neuroimaging criteria, we defined three patient groups: rATL-predominant atrophy with relative sparing of the frontal lobes (n = 46), frontal-predominant atrophy with relative sparing of the rATL (n = 79), and lATL-predominant atrophy with relative sparing of the frontal lobes (n = 75). We compared the clinical, neuropsychological, genetic, and pathological profiles of these groups. In the rATL-predominant group, the earliest symptoms were loss of empathy (27%), person-specific semantic impairment (23%), and complex compulsions and rigid thought process (18%). On testing, this group exhibited greater impairments in Emotional Theory of Mind, recognition of famous people (from names and face), and facial affect naming (despite preserved face perception) than the frontal- and lATL-predominant groups. The clinical symptoms in the first three years of the disease alone were highly sensitive (81%) and specific (84%) differentiating rATL-predominant from frontal-predominant groups. FTLD-TDP (84%) was the most common pathology of the rATL-predominant group. rATL-predominant degeneration is characterized by early loss of empathy and person-specific knowledge, deficits that are caused by progressive decline in semantic memory for concepts of socioemotional relevance. Guided by our results, we outline new diagnostic criteria and propose the name, “semantic behavioral variant frontotemporal dementia” (sbvFTD), which highlights the underlying cognitive mechanism and the predominant symptomatology. These diagnostic criteria will facilitate early identification and care of patients with early, focal rATL degeneration as well as in vivo prediction of FTLD-TDP pathology.
Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.
Previous studies indicate that repetition is affected in primary progressive aphasia (PPA), particularly in the logopenic variant, due to limited auditory-verbal short-term memory (avSTM). We tested repetition of phrases varied by length (short, long) and meaning (meaningful, non-meaningful) in 58 participants (22 logopenic, 19 nonfluent, and 17 semantic variants) and 21 healthy controls using a modified Bayles repetition test. We evaluated the relation between cortical thickness and repetition performance and whether sub-scores could discriminate PPA variants. Logopenic participants showed impaired repetition across all phrases, specifically in repeating long phrases and any phrases that were non-meaningful. Nonfluent, semantic, and healthy control participants only had difficulty repeating long, non-meaningful phrases. Poor repetition of long phrases was associated with cortical thinning in left temporo-parietal areas across all variants, highlighting the importance of these areas in avSTM. Finally, Bayles repetition phrases can assist classification in PPA, discriminating logopenic from nonfluent/semantic participants with 89% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.