BackgroundDespite penile carcinoma (PeCa) being a relatively rare neoplasm, it remains an important public health issue for poor and developing countries. Contrary to most tumors, limited data are available for markers that are capable of assisting in diagnosis, prognosis, and treatment of PeCa. We aimed to identify molecular markers for PeCa by evaluating their epigenomic and transcriptome profiles and comparing them with surrounding non-malignant tissue (SNT) and normal glans (NG).ResultsGenome-wide methylation analysis revealed 171 hypermethylated probes in PeCa. Transcriptome profiling presented 2,883 underexpressed and 1,378 overexpressed genes. Integrative analysis revealed a panel of 54 genes with an inverse correlation between methylation and gene expression levels. Distinct methylome and transcriptome patterns were found for human papillomavirus (HPV)-positive (38.6%) and negative tumors. Interestingly, grade 3 tumors showed a distinct methylation profile when compared to grade 1. In addition, univariate analysis revealed that low BDNF methylation was associated with lymph node metastasis and shorter disease-free survival. CpG hypermethylation and gene underexpression were confirmed for a panel of genes, including TWIST1, RSOP2, SOX3, SOX17, PROM1, OTX2, HOXA3, and MEIS1.ConclusionsA unique methylome signature was found for PeCa compared to SNT, with aberrant DNA methylation appearing to modulate the expression of specific genes. This study describes new pathways with the potential to regulate penile carcinogenesis, including stem cell regulatory pathways and markers associated to a worse prognosis. These findings may be instrumental in the discovery and application of new genetic and epigenetic biomarkers in PeCa.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-015-0082-4) contains supplementary material, which is available to authorized users.
Chromosome mapping and studies of the genomic organization of repetitive DNA sequences provide valuable insights that enhance our evolutionary and structural understanding of these sequences, as well as identifying chromosomal rearrangements and sex determination. This study investigated the occurrence and organization of repetitive DNA sequences in Leporinus elongatus using restriction enzyme digestion and the mapping of sequences by chromosomal fluorescence in situ hybridization (FISH). A 378-bp fragment with a 54.2% GC content was isolated after digestion with the SmaI restriction enzyme. BLASTN search found no similarity with previously described sequences, so this repetitive sequence was named LeSmaI. FISH experiments were conducted using L. elongatus and other Anostomidae species, i.e. L. macrocephalus,L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii, S. isognathus, and Abramites hypselonotus which detected signals that were unique to male and female L. elongatus individuals. Double-FISH using LeSmaI and 18S rDNA showed that LeSmaI was located in a nucleolus organizer region (NOR) in the male and female metaphases of L. elongatus. This report also discusses the role of repetitive DNA associated with NORs in the diversification of Anostomidae species karyotypes.
Copy number variations (CNVs) have been previously associated with several different neurodevelopmental psychiatric disorders, such as autism, schizophrenia, and attention deficit hyperactivity disorder (ADHD). The present study consisted of a pilot genome-wide screen for CNVs in a cohort of 16 patients with early-onset obsessive-compulsive disorder (OCD) and 12 mentally healthy individuals, using array-based comparative genomic hybridization (aCGH) on 44K arrays. A small rare paternal inherited microdeletion (∼64 kb) was identified in chromosome 15q13.3 of one male patient with very early onset OCD. The father did not have OCD. The deletion encompassed part of the FMN1 gene, which is involved with the glutamatergic system. This finding supports the hypothesis of a complex network of several genes expressed in the brain contributing for the genetic risk of OCD, and also supports the glutamatergic involvement in OCD, which has been previously reported in the literature.
The dog can spontaneously develop prostate cancer and consequently can be used as an experimental model for prostatic diseases associated with aging, including benign prostate hyperplasia (BPH) and prostate carcinoma (PCa). DNA copy number variations (CNVs) have been used to identify genes associated with cancer development and progression. DNA microarray based comparative genomic hybridization (aCGH) is a technique that allows to identify copy number of thousands of genes throughout the genome. aCGH was used to identify genomic regions with significantly different DNA copy number in three benign prostatic hyperplasia (BPH), four proliferative inflammatory atrophy (PIA), and 14 canine prostate carcinoma (PCa). Five histologically normal prostate tissue were used as reference. Genomic DNA was extracted from formalin fixed and paraffin embedded samples and CNVs data was evaluated in Canine Genome CGH Microarray 4x44K (G2519F, Design ID021193, Agilent). Data analysis was performed using Genomic Workbench Standard Edition 5.0.14 (Agilent). PCa showed higher number of altered genes related to canonical diseases process, cellular functions and molecular pathways as well as greater inter-relationship between genes, compared with PIA and BPH. In conclusion, PCa showed a more complex genotype, being losses the most frequent genomic changes. Some discrepancies between genomic alterations in human and canine carcinomas may indicate the different clinical behavior of these tumors in these two species. In addition, it was observed was an ascending pattern of genomic complexity in BPH, PIA and CA consistent with a model of multistep tumor progression. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 5260. doi:1538-7445.AM2012-5260
BackgroundTesticular germ cell tumors (TGCTs) account for 1-2% of all tumors in young and middle aged men. A 75-fold increase in TCGT development has been reported for monozygotic (MZ) twins. Therefore, the occurrence of simultaneous tumors in MZ twins emphasizes the importance of genetic factors that influence the risk of developing these tumors. Genomic screening was performed for one family containing MZ twins with testicular germ cell tumors, in order to define alterations associated with risk of tumor development.MethodsCopy number alterations were evaluated using array-CGH (4x44K, Agilent Technologies) in one seminoma and one embryonal carcinoma (EC) from MZ twins. In addition, genomic alterations from the tumors and peripheral blood cells of the twins were compared to the parental genomes via their peripheral blood cells.ResultsEmbryonal carcinoma (Twin-1 t) presented a lower frequency of genomic alterations compared to the seminoma (Twin-2 t). One minimal common region of loss was observed in 9p13.1-p12 in the comparison between DNA from blood samples for Twin-1 and Twin-2. In this region is mapped the CNTNAP3 gene which was confirmed as involved in losses by qPCR. Comparative analysis of novel CNVs between the Twin-1 t and Twin-2 t showed five minimal common regions involving gain at chromosomes 12 (12p12.3-p11.1 and 12p13.33-p12.3), while losses were observed at 10p15.3-p15.2, 13q21.1-q21.2 and 15q11.1-q11.2. In addition, one exclusive rare copy number alteration was detected in Twin-1 t and Twin-2 t, and 19 novel alterations were identified in the Twin-2 t.ConclusionDistinct genomic profiles for MZ twins with phenotypically different TGCT were described. Of particular interest, 12p gains were detected exclusively in tumor samples. In peripheral blood samples, loss of 9p13.1-p12 was the unique novel CNV shared by the twins, confirming the involvement of CNTNAP3 gene in TGCTs development. Although similar CNV profiles were shared by both the peripheral blood and tumor samples of the twins, tumor-specific CNV loci were identified for seminoma and non-seminomatous tumors. These findings suggest the presence of de novo germline structural alterations and TGCT predisposition.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-014-0181-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.