All in the family A variety of feeding experiments with 13C and 15N-labeled molecules established the phthalazinone core of azamerone is derived from the diazo chlorinated meroterpenoid SF2415A3 (see scheme). We propose that an oxidative rearrangement of the aryl diazoketone followed by rearomatization with the dinitrogen group occurs during the biotransformation. This unique biochemistry extends our limited knowledge of the biosynthesis of natural products containing N–N bonds.
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the CREB-binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high risk HPV16-E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.
Chemokines orchestrate the migration of leukocytes in the context of homeostasis and inflammation. In addition to interactions of chemokines with receptors on migrating cells, these processes require interactions of chemokines with glycosaminoglycans (GAGs) for cell surface localization. Most chemokines are basic proteins with Arg/Lys/His residue clusters functioning as recognition epitopes for GAGs. In this study we characterized the GAG-binding epitopes of the chemokine I-TAC/CXCL11. Four separate clusters of basic residues were mutated to alanine and tested for their ability to bind to GAGs in vitro and to activate the receptor, CXCR3. Mutation of a set of basic residues in the C-terminal helix (the 50s cluster, 57 KSKQAR 62 ) along with Lys 17 , significantly impaired heparin binding in vitro, identifying these residues as components of the dominant epitope. However, this GAG mutant retained nearly wild type receptor binding affinity, and its ability to induce cell migration in vitro was only mildly perturbed. Nevertheless, the mutant was unable to induce cell migration in vivo, establishing a requirement of CXCL11 for GAG binding for in vivo function. These studies also led to some interesting findings. First, CXCL11 exhibits conformational heterogeneity, as evidenced by the doubling of peaks in its HSQC spectra. Second, it exhibits more than one affinity state for both heparin and CXCR3, which may be related to its structural plasticity. Finally, although the binding affinities of chemokines for GAGs are typically weaker than interactions with receptors, the high affinity GAG binding state of CXCL11 is comparable with typical receptor binding affinities, suggesting some unique properties of this chemokine.Chemokines belong to a family of small chemotactic cytokines that selectively recruit and activate specific leukocytes during inflammation and routine immunosurveillance (1, 2).The chemokines of all four subclasses (CC, CXC, CX3C, and C) have a remarkably conserved three-dimensional tertiary structure, but many form dimers, tetramers, and higher order oligomers, and although monomeric forms are sufficient for cell migration in vitro (3-5), for some chemokines, oligomerization is required for function in vivo (6, 7). All chemokines exert their biological activity by binding to seven-transmembrane G protein-coupled receptors, which are also subdivided into four classes analogous to the ligand classification (8). Additionally, many chemokines interact with the glycosaminoglycan (GAG) 3 moieties of proteoglycans on endothelial cells and the extracellular matrix (6). GAGs enable the surface immobilization of chemokines, thereby creating haptotactic gradients in order to direct leukocytes to sites of inflammation (9). As demonstrated with a series of chemokine mutants that were impaired in their ability to bind GAGs, when the GAG interaction is disrupted, chemokines lose the ability to efficiently recruit cells in vivo, even when chemotaxis in vitro is unperturbed (7).GAGs are negatively charged linear polysacc...
Chemokines have two essential interactions in vivo, with G protein-coupled receptors, which activate intracellular signaling pathways, and with glycosaminoglycans (GAGs), which are involved in cell surface localization and transport. Although it has been shown that chemokines bind and activate their respective G protein-coupled receptors as monomers, many chemokines oligomerize upon GAG binding, and the ability to oligomerize and bind GAGs is required for in vivo function. In this study, we investigated the structure, dynamics, and oligomerization behavior of cutaneous T-cell-attracting chemokine (CTACK, also known as CCL27) by NMR.15 N relaxation and translational self-diffusion rates indicate that CCL27 oligomerizes, but in contrast to many other chemokines that form relatively discrete oligomers, CCL27 transitions between monomer, dimer, and tetramer species over a relatively narrow concentration range. A three-dimensional structure determination was pursued under conditions where CCL27 is primarily dimeric, revealing the standard motif for a chemokine monomer. Analysis of chemical shift perturbations of 1 H-15 N HSQC spectra, relaxation-dispersion experiments, and filtered nuclear Overhauser effects suggest that CCL27 does not adopt a discrete CXC or CC dimer motif. Instead, CCL27 has uncommon oligomerization behavior, where several equilibria involving relatively low affinity interactions between different interfaces seem to be simultaneously at work. However, interaction with heparin avidly promotes oligomerization under conditions where CCL27 is monomeric by itself. We hypothesize that the plasticity in the oligomerization state may enable CCL27 to adopt different oligomeric structures, depending on the nature of the GAG binding partner, thereby providing a mechanism for increased diversity and specificity in GAG-binding and GAGrelated functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.