In order to lead to a competitive advantage there is the need to carefully consider the pros and cons of state of the art manufacturing techniques. This is frequently carried out in a competitive manner but can also be done in a complementary way. This complementary approach is often used for the processing of difficult-to-machine materials with particular regard to high tech parts or components. Hybrid machining processes (HMPs) or -more general -advanced machining processes (AMPs) can be brought to the point that the results would not be possible with the individual constituent processes in isolation [1]. Hence, the controlled interaction of process mechanisms and/or energy sources is frequently applied for a significant increase of the process performance [2] and will be addressed within the present paper.A via Electron Beam Melting (EBM) manufactured gamma titanium aluminide (γ-TiAl) nozzle is extended and adapted. This is done via hybrid Laser Metal Deposition (LMD). The presented approach considers critical impacts like processing temperatures, temperature gradients and solidification conditions with particular regard to crucial material properties like the phenomena of lamellar interface cracking [3][4].Furthermore, selected destructive and non-destructive testing is performed in order to prove the material properties. Finally, the results will be evaluated. This will also be done in the perspective of other applications.
Laser metal deposition has been already introduced in various industrial branches, as aviation, energy, medical technology, or tooling. Depending on process conditions of the specific application, powder, wire, or even strips can be used as filler material to coat, and to refurbish as well as to manufacture parts and functional components. Independent from the chosen type of filler material, the deposition has to be in line with specific requirements such as the allowed appearance of porosity, delamination, dilution, or cracking. The latter often becomes rather challenging due to high thermal gradients caused by typical laser-related high energy densities. Relief can be found by hybrid processing as well as suited process regimes yielding in suitable tailored temperature states and crack-free material deposition. Within this paper, such tailored solutions for the manufacturing and processing of materials with a high hot and cold cracking susceptibility such as nickel-based superalloys and alloys based on titanium aluminides are presented. Critical impacts like heating and cooling based on the analysis of melt pool flow and the morphology of solidification are considered. The authors present possibilities to influence, control, and monitor the process. The mechanical properties of corresponding additive manufactured demonstrators will be validated on the basis of destructive and nondestructive testing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.