Summary:Allogeneic stem cell transplantations (SCT) are currently being used as a therapy for hematological malignancies, some solid tumors and nonmalignant bone marrow deficiencies. Nevertheless, clinical applicability is limited due to toxicity of conditioning regimens, graft-versus-host disease (GVHD) and the scarcity of HLA-identical family donors. New concepts are based on nonmyeloablative conditioning to reduce toxicity, prevention or amelioration of GVHD and the use of haploidentical donors to increase donor availability. To combine these requirements, we have developed a nonmyeloablative conditioning regimen, consisting of low-dose total body irradiation and cyclophosphamide-based chemotherapy. In a haploidentical F1-F1 mouse model, this nonmyeloablative transplantation protocol resulted in stable full donor chimerism, but also in the development of severe GVHD. Administration of keratinocyte growth factor (KGF) reduced GVHD, evident as reduced weight loss and a lesser degree of dermatitis, compared to saline-treated controls. KGF preserved plasma citrulline and tumor necrosis factor-a levels, both indicative for reduced injury to the gastrointestinal tract. This was confirmed by histological findings. At 6 months after transplantation, survival rates were significantly higher in KGF-treated animals as compared to phosphate buffered saline-treated controls. These results indicate that KGF preserves gut integrity and might therefore contribute substantially to reduction of lethal GVHD in (nonmyeloablative) haploidentical transplantation. Bone Marrow Transplantation (2005) 36, 907-915.
Dendritic cells (DCs) are the best professional antigen-presenting cells to stimulate cytotoxic as well as T helper cells and are therefore appropriate candidates for establishing immunotherapy. The concept of our vaccination program is to introduce the tumor-associated antigen mucin-1 (MUC1) into DCs. Analysis of immature and mature DCs--before transducing the antigen MUC1--already demonstrated expression of MUC1 on in vitro monocyte-derived DCs upon maturation. Different culture methods as well as maturation cocktails showed similar results concerning the upregulation of MUC1 expression. Furthermore, we studied the expression of MUC1 on DCs in vivo. No MUC1 expression was found on blood DCs, or on thymic or tonsil DCs. On the other hand, synovial fluid from patients with arthritis contained DCs that were found to express MUC1. This study shows for the first time that the tumor-associated antigen MUC1 is expressed on in vivo DCs. We further show that MUC1 is also expressed on in vitro cultured bone marrow-derived DCs of human MUC1 transgenic mice, supporting the relevance of this mouse model to the human situation. The observation that MUC1 is present on in vivo DCs suggests a functional role, but this physiological function remains to be elucidated.
Despite a slight decrease in mortality over the last decade, breast cancer still remains a leading cause of cancerrelated death in women. Although anti-tumor effects have been observed after allogeneic stem cell transplantation (SCT), this treatment is not standard care owing to graftversus-host disease (GVHD) and scarcity of suitable donors. With the aim of reducing treatment-related mortality and increasing donor availability in clinical situations, we developed a preclinical mouse model that combines nonmyeloablative conditioning with the use of haploidentical donor-recipient pairs. To mimic active disease, CB6F1 mice were inoculated with 5 Â 10 4 4T1 mammary carcinoma cells 10 days before transplantation. Keratinocyte growth factor (KGF) was used as GVHD prophylaxis. Syngeneic (CB6F1) SCT did not cure any of the mice and KGF treatment did not influence tumor development. After transplantation with haploidentical (B6CBAF1) bone marrow and splenocytes, however, tumor outgrowth was reduced and long-term disease-free survival (43 months) was observed in 9/18 (50%) (P ¼ 0.0011) of the animals. We conclude that in a model of murine breast cancer, a graft-versus-tumor effect can be induced by a nonmyeloablative haploidentical SCT procedure.
PurposeAdministration of 5 million alloreactive natural killer (NK) cells after low-dose chemo-irradiation cured mice of 4T1 breast cancer, supposedly dose dependent. We now explored the efficacy of bone marrow as alternative in vivo source of NK cells for anti-breast cancer treatment, as methods for in vitro clinical scale NK cell expansion are still in developmental phases.MethodsProgression-free survival (PFS) after treatment with different doses of spleen-derived alloreactive NK cells to 4T1-bearing Balb/c mice was measured to determine a dose–response relation. The potential of bone marrow as source of alloreactive NK cells was explored using MHC-mismatched mice as recipients of 4T1. Chemo-irradiation consisted of 2× 2 Gy total body irradiation and 200 mg/kg cyclophosphamide. Antibody-mediated in vivo NK cell depletion was applied to demonstrate the NK cell’s role.ResultsAdministration of 2.5 instead of 5 million alloreactive NK cells significantly reduced PFS, evidencing dose responsiveness. Compared to MHC-matched receivers of subcutaneous 4T1, fewer MHC-mismatched mice developed tumors, which was due to NK cell alloreactivity because in vivo NK cell depletion facilitated tumor growth. Application of low-dose chemo-irradiation increased plasma levels of NK cell-activating cytokines, NK cell activity and enhanced NK cell-dependent elimination of subcutaneous tumors. Intravenously injected 4T1 was eliminated by alloreactive NK cells in MHC-mismatched recipients without the need for chemo-irradiation.ConclusionsBone marrow is a suitable source of sufficient alloreactive NK cells for the cure of 4T1 breast cancer. These results prompt clinical exploration of bone marrow transplantation from NK-alloreactive MHC-mismatched donors in patients with metastasized breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.