Amphiphilic poly(ethylene glycol)-graft-poly(vinyl acetate) copolymers with a low degree of grafting undergo self-folding in water driven by hydrophobic interactions, resulting in single-chain nanoparticles (SCNPs) possessing a hydrodynamic radius of about 10 nm. A temperature scan revealed a lower critical solution temperature (LCST)-type phase behavior. In addition, SAXS data collected close to the LCST showed that these SCNPs aggregate into one-dimensional elongated objects, preferentially. With respect to the typical linear complex-structured polymer chains, this material is ideally suited for industrial and/or biomedical applications because of its simple molecular architecture and persistence of SCNPs up to 100 mg mL. The so-obtained single-chain globular particles are able to swell upon loading with small hydrophobic molecules therefore promoting solubilization of flavors or drugs, which could be of interest in the food and pharmaceutical industry.
A PEG-graft-PVAc comb-like copolymer in water forms spherical single-chain nanoparticles that transition towards hierarchically complex structures with increasing polymer concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.