Though the physical structuring of insoluble dietary fiber sources may strongly impact their processing by microbiota in the colon, relatively little mechanistic information exists to explain how these aspects affect microbial fiber fermentation. Here, we hypothesized that wheat bran fractions varying in size would be fermented differently by gut microbiota, which would lead to size-dependent differences in metabolic fate (as short-chain fatty acids; SCFAs) and community structure. To test this hypothesis, we performed an in vitro fermentation assay in which wheat bran particles from a single source were separated by sieving into five size fractions and inoculated with fecal microbiota from three healthy donors. SCFA production, measured by gas chromatography, uncovered size fraction-dependent relationships between total SCFAs produced as well as the molar ratios of acetate, propionate, and butyrate. 16S rRNA sequencing revealed that these size-dependent metabolic outcomes were accompanied by the development of divergent microbial community structures. We further linked these distinct results to subtle, size-dependent differences in chemical composition. These results suggest that physical context can drive differences in microbiota composition and function, that fiber-microbiota interaction studies should consider size as a variable, and that manipulating the size of insoluble fiber-containing particles might be used to control gut microbiome composition and metabolic output.
Increased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units (OTUs) responded similarly in growth responses across individuals’ microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.