The performance of photovoltaic (PV) arrays are affected by the operating temperature, which is influenced by thermal losses to the ambient environment. The factors affecting thermal losses include wind speed, wind direction, and ambient temperature. The purpose of this work is to analyze how the aforementioned factors affect array efficiency, temperature, and heat transfer coefficient/thermal loss factor. Data on ambient and array temperatures, wind speed and direction, solar irradiance, and electrical output were collected from a PV array mounted on a CanmetENERGY facility in Varennes, Canada, and analyzed. The results were compared with computational fluid dynamics (CFD) simulations and existing results from PVsyst. The findings can be summarized into three points. First, ambient temperature and wind speed are important factors in determining PV performance, while wind direction seems to play a minor role. Second, CFD simulations found that temperature variation on the PV array surface is greater at lower wind speeds, and decreases at higher wind speeds. Lastly, an empirical correlation of heat transfer coefficient/thermal loss factor has been developed.
In comparison to fossil fuels, solar energy is a more sustainable option due to its high availability and less environmental impact. Improving the efficiency of solar farms has been a primary concern of solar energy research. Many studies focus on the control of the tilt angle of solar modules to maximize their solar radiation reception and energy generation. However, an increase in solar radiation is accompanied by an increase in module temperature, which is known to be a significant parameter that reduces the power generation efficiency. Wind is another influential factor that helps Photovoltaic systems maintain a low operating temperature by enhancing the rate of heat transfer. Therefore, solar radiation and wind behavior are both critical parameters that must be considered to optimize solar panel performance. In this paper, the effect of wind conditions on solar panel performance will be examined. The solar panel energy output model will be built by empirically considering the irradiation, ambient temperature, wind speed, and wind direction. The published weather data and energy output data for the year 2017–2018 have been collected from Antelope Valley Solar Ranch, located in Lancaster, California. Four models have been proposed and the results indicate that the model which incorporates the wind conditions has the highest accuracy in approximating the energy production of solar farms. Among the factors that affect the temperature of solar panels and further the efficiency of solar panels including solar irradiation, convection, conduction, wind plays a major role in convective heat transfer. Based on this model, the potential improvement of energy generation via introducing a horizontal installation angle and adjusting this angle monthly according to the wind conditions is further analyzed. These results will help designers improve the design of solar farms by taking into consideration the local weather conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.