Three-in-one: a single bCyD polymer easily prepared in water is used to co-encapsulate cabazitaxel and bicalutamide with chlorin e6 affording a nanoplatform to implement multimodal cancer therapy.
In the quest for new therapies targeting hypoxia, aromatic endoperoxides have intriguing potential as oxygen releasing agents (ORAs) able to free O 2 in tissues upon suitable trigger. Four aromatic substrates were synthesized and the formation of their corresponding endoperoxides was optimized in organic solvent upon selective irradiation of Methylene Blue, a low-cost photocatalyst, producing the reactive singlet oxygen species. Complexation of the hydrophobic substrates within a hydrophilic cyclodextrin (CyD) polymer allowed their photooxygenation in homogeneous aqueous environment using the same optimized protocol upon dissolution in water of the three readily accessible reagents. Notably, reaction rates were comparable in buffered D 2 O and organic solvent and, for the first time, the photooxygenation of highly hydrophobic substrates was achieved for millimolar solutions in non-deuterated water. Quantitative conversion of the substrates, straightforward isolation of the endoperoxides and recovery of the polymeric matrix were achieved. Cycloreversion of one ORA to the original aromatic substrate was observed upon thermolysis. These results hold great potential for the launch of CyD polymers both as reaction vessels for green, homogeneous photocatalysis and as carrier for the delivery of ORAs in tissues.[a] M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.