Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it).This volume includes the reports of both task organisers and participants to all of the EVALITA 2020 challenges. In the 2020 edition, we coordinated the organization of 14 different tasks belonging to five research areas, being: (i) Affect, Hate, and Stance, (ii) Creativity and Style, (iii) New Challenges in Long-standing Tasks, (iv) Semantics and Multimodality, Time and Diachrony.The volume is opened by an overview to the EVALITA 2020 campaign, in which we describe the tasks, provide statistics on the participants and task organizers as well as our supporting sponsors. The abstract of the keynote speech made by Preslav Nakov titled "Flattening the Curve of the COVID-19 Infodemic: These Evaluation Campaigns Can Help!" is also included in this collection.Due to the 2020 COVID-19 pandemic, the traditional workshop was held online, where several members of the Italian NLP Community presented the results of their research. Despite the circumstances, the workshop represented an occasion for all participants from both academic institutions and private companies to disseminate their work and results and to share ideas through online sessions dedicated to each task and a general discussion during the plenary event.We carried on with the tradition of the "Best system across tasks" award. As in 2018, it represented an incentive for students, IT developers and researchers to push the boundaries of the state of the art by facing tasks in new ways, even if not winning.
The 2022 edition of LT-EDI proposed two tasks in various languages. Task hope required models for the automatic identification of hopeful comments for equality, diversity, and inclusion. Task antiLGBT focused on the identification of homophobic and transphobic comments. We targeted both tasks in English by using reinforced BERT-based approaches. Our core strategy aimed at exploiting the data available for each given task to augment the amount of supervised instances in the other. On the basis of an active learning process, we trained a model on the dataset for Task i and applied it to the dataset for Task j to iteratively integrate new silver data for Task i. Our official submissions to the shared task obtained a macro-averaged F 1 score of 0.53 for Task hope and 0.46 for Task antiLGBT , placing our team in the third and fourth positions out of 11 and 12 participating teams respectively.
We present our submission to SemEval 2022 Task 5 on Multimedia Automatic Misogyny Identification. We address the two tasks: Task A consists of identifying whether a meme is misogynous. If so, Task B attempts to identify its kind among shaming, stereotyping, objectification, and violence. Our approach combines a BERT Transformer with CLIP for the textual and visual representations. Both textual and visual encoders are fused in an early-fusion fashion through a Multimodal Bidirectional Transformer with unimodally pretrained components. Our official submissions obtain macroaveraged F 1 =0.727 in Task A (4th position out of 69 participants) and weighted F 1 =0.710 in Task B (4th position out of 42 participants).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.