Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract, causing an inflammatory-bowel-disease-like phenotype. Our results identify NF-kappaB signalling in the gut epithelium as a critical regulator of epithelial integrity and intestinal immune homeostasis, and have important implications for understanding the mechanisms controlling the pathogenesis of human inflammatory bowel disease.
The IkappaB kinase (IKK) subunit NEMO/IKKgamma is essential for activation of the transcription factor NF-kappaB, which regulates cellular responses to inflammation. The function of NEMO in the adult liver remains elusive. Here we show that ablation of NEMO in liver parenchymal cells caused the spontaneous development of hepatocellular carcinoma in mice. Tumor development was preceded by chronic liver disease resembling human nonalcoholic steatohepatitis (NASH). Antioxidant treatment and genetic ablation of FADD demonstrated that death receptor-mediated and oxidative stress-dependent death of NEMO-deficient hepatocytes triggered disease pathogenesis in this model. These results reveal that NEMO-mediated NF-kappaB activation in hepatocytes has an essential physiological function to prevent the spontaneous development of steatohepatitis and hepatocellular carcinoma, identifying NEMO as a tumor suppressor in the liver.
Three mouse lines expressing Cre recombinase under the control of the human K14 promoter induced specific deletion of loxP flanked target sequences in the epidermis, in tongue, and thymic epithelium of the offspring where the Cre allele was inherited from the father. Where the mother carried the Cre allele, loxP flanked sequences were completely deleted in all tissues of the offspring, even in littermates that did not inherit the Cre allele. This maternally inherited phenotype indicates that the human K14 promoter is transcriptionally active in murine oocytes and that the enzyme remains active until after fertilization, even when the Cre allele becomes transmitted to the polar bodies during meiosis. Detection of K14 mRNA by RT-PCR in murine ovaries and immunohistochemical identification of the K14 protein in oocytes demonstrates that the human K14 promoter behaves like its murine homolog, thus identifying K14 as an authentic oocytic protein.
The kinase IKK1 (also known as IKKalpha) was previously reported to regulate epidermal development and skeletal morphogenesis by acting in keratinocytes to induce their differentiation in an NF-kappaB independent manner. Here, we show that mice with epidermal keratinocyte-specific IKK1 ablation (hereafter referred to as IKK1(EKO)) develop a normally differentiated stratified epidermis, demonstrating that the function of IKK1 in inducing epidermal differentiation is not keratinocyte-autonomous. Despite normal epidermal stratification, the IKK1(EKO) mice display impaired epidermal-barrier function and increased transepidermal water loss, due to defects in stratum corneum lipid composition and in epidermal tight junctions. These defects are caused by the deregulation of retinoic acid target genes, encoding key lipid modifying enzymes and tight junction proteins, in the IKK1-deficient epidermis. Furthermore, we show that IKK1-deficient cells display impaired retinoic acid-induced gene transcription, and that IKK1 is recruited to the promoters of retinoic acid-regulated genes, suggesting that one mechanism by which IKK1 controls epidermal-barrier formation is by regulating the expression of retinoic acid receptor target genes in keratinocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.