Much evidence shows that physical exercise (PE) is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction.
We do not all grow older in the same way. Some individuals have a cognitive decline earlier and faster than others who are older in years but cerebrally younger. This is particularly easy to verify in people who have maintained regular physical activity and healthy and cognitively stimulating lifestyle and even in the clinical field. There are patients with advanced neurodegeneration, such as Alzheimer's disease (AD), that, despite this, have mild cognitive impairment. What determines this interindividual difference? Certainly, it cannot be the result of only genetic factors. We are made in a certain manner and what we do acts on our brain. In fact, our genetic basis can be modulated, modified, and changed by our experiences such as education and life events; daily, by sleep schedules and habits; or also by dietary elements. And this can be seen as true even if our experiences are indirectly driven by our genetic basis. In this paper, we will review some current scientific research on how our experiences are able to modulate the structural organization of the brain and how a healthy lifestyle (regular physical activity, correct sleep hygiene, and healthy diet) appears to positively affect cognitive reserve.
a b s t r a c tAlthough widely explored, the pathogenesis of Alzheimer's disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of b-amyloid (Ab) remain to be elucidated. Many evidences are starting to cast doubt on Ab as the primary causative factor in AD. For instance, Ab is deposited in the brain following many different kinds of injury. Also, concentration of Ab needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.