FluorAcryl 3298 (FA) is a UV-curable fluoroacrylate polymer commonly employed as a chemically resistant, hydrophobic, and oleophobic coating. Here, FA was used in a cleanroombased microstructuring process to fabricate hydrophilic-in-hydrophobic (HiH) micropatterned surfaces containing femtoliter-sized well arrays. A short protocol involving direct UV photopatterning, an etching step, and final recovery of the hydrophobic properties of the polymer produced patterned substrates with micrometer resolution. Specifically, HiH microwell arrays were obtained with a well diameter of 10 μm and various well depths ranging from 300 nm to 1 μm with high reproducibility. The 300 nm deep microdroplet array (MDA) substrates were used for digital immunoassays, which presented a limit of detection in the attomolar range. This demonstrated the chemical functionality of the hydrophilic and hydrophobic surfaces. Furthermore, the 1 μm deep wells could efficiently capture particles such as bacteria, whereas the 300 nm deep substrates or other types of flat HiH molecular monolayers could not. Capturing a mixture of bacteria expressing red-and green-fluorescent proteins, respectively, served as a model for screening and selection of specific phenotypes using FA-MDAs. Here, green-fluorescent bacteria were specifically selected by overlaying a solution of gelatin methacryloyl (GelMA) mixed with a photoinitiator and using a high-magnification objective, together with custom pinholes, in a common fluorescence microscope to cross-link the hydrogel around the bacteria of interest. In conclusion, due to the straightforward processing, versatility, and low-price, FA is an advantageous alternative to more commonly used fluorinated materials, such as CYTOP or Teflon-AF, for the fabrication of HiH microwell arrays and other biphilic microstructures.
Interactions of the cationic lipodepsipeptide syringopeptin 25A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1M KCl at pH3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH6.8, where the DOPS SAM is negatively charged, but also at pH3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands.
Microdroplet arrays (MDAs) are powerful tools for digital immunoassays, high-throughput screening and single cell analysis. However, MDAs are usually produced with cleanroom processes, which are associated with high costs and low availability. Furthermore, in order to obtain robust and stable MDAs based on hydrophilic spots surrounded by a hydrophobic background, the chemistry must be strictly controlled, which is challenging using shared equipment. Here, we developed a new method to fabricate MDA substrates independently from the cleanroom. A small and low-cost in-house built system to collimate the light source was assembled for photopatterning a negative resist, and spots with diameters down to 4 μm were obtained, with only 3% to 5% spot-to-spot variation across the same sample and high batch-to-batch reproducibility. The use of a negative photoresist enabled the formation of a hydrophobic coating in solution which yielded high-quality MDAs. The feasibility for carrying out digital assays was demonstrated by measuring anti-Tau antibody in sample buffers containing bovine serum albumin, with no noticeable surface fouling. The reported, robust, cost-effective, and fast process could hence lower the threshold to fabricate and use MDAs for digital immunoassays and other microcompartmentalization-based applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.