Background
The UK 100,000 Genomes Project is in the process of investigating the role of genome sequencing of patients with undiagnosed rare disease following usual care, and the alignment of research with healthcare implementation in the UK’s national health service. (Other parts of this Project focus on patients with cancer and infection.)
Methods
We enrolled participants, collected clinical features with human phenotype ontology terms, undertook genome sequencing and applied automated variant prioritization based on virtual gene panels (PanelApp) and phenotypes (Exomiser), alongside identification of novel pathogenic variants through research analysis. We report results on a pilot study of 4660 participants from 2183 families with 161 disorders covering a broad spectrum of rare disease.
Results
Diagnostic yields varied by family structure and were highest in trios and larger pedigrees. Likely monogenic disorders had much higher diagnostic yields (35%) with intellectual disability, hearing and vision disorders, achieving yields between 40 and 55%. Those with more complex etiologies had an overall 25% yield. Combining research and automated approaches was critical to 14% of diagnoses in which we found etiologic non-coding, structural and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohort-wide burden testing across 57,000 genomes enabled discovery of 3 new disease genes and 19 novel associations. Of the genetic diagnoses that we made, 24% had immediate ramifications for the clinical decision-making for the patient or their relatives.
Conclusion
Our pilot study of genome sequencing in a national health care system demonstrates diagnostic uplift across a range of rare diseases.
(Funded by National Institute for Health Research and others)
Summary
We describe a novel computational method for genotyping repeats using sequence graphs. This method addresses the long-standing need to accurately genotype medically important loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such loci.
Availability and implementation
ExpansionHunter is implemented in C++ and is available under the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are available at https://github.com/Illumina/ExpansionHunter/.
Supplementary information
Supplementary data are available at Bioinformatics online.
Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage, and repair processes that have arisen in each patient’s cancer. We performed mutational signature analyses on 12,222 whole-genome–sequenced tumor-normal matched pairs from patients recruited via the UK National Health Service (NHS). We contrasted our results with two independent cancer WGS datasets—from the International Cancer Genome Consortium (ICGC) and the Hartwig Medical Foundation (HMF)—involving 18,640 whole-genome–sequenced cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. We show for each organ that cancers have a limited number of common signatures and a long tail of rare signatures, and we provide a practical solution for applying this concept of common versus rare signatures to future analyses.
High-throughput next-generation sequencing can identify disease-causing mutations in extremely heterogeneous disorders. Kara
et al
. investigate a series of 97 index cases with complex hereditary spastic paraplegia (HSP). They identify
SPG11
defects in 30 families, as well as mutations in other HSP genes and genes associated with disorders including Parkinson’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.