a b s t r a c tFungal and mycotoxin contamination was investigated in field samples of nuts, shells and pods of the Brazil nut collected during different periods in Itacoatiara, State of Amazonas, Brazil: day 0, samples still on the tree; days 5, 10 and 15, samples in contact with soil for 5, 10 and 15 days, respectively. The most prevalent fungi were Aspergillus flavus in fruit pods and nuts and Fusarium spp. in shells. Penicillium spp. and A. flavus were isolated from soil, and Fusarium spp. and Penicillium spp. from air. Aflatoxins and cyclopiazonic acid were not detected in any of the samples analyzed. The high frequency of isolation of aflatoxigenic A. flavus strains from soil and Brazil nuts increases the chance of aflatoxin production in these substrates. These findings suggest a possible contamination before drying and indicate soil as the main source of fungal contamination of Brazil nuts.
The aim of this study was to use a polyphasic approach to identify Aspergillus section Flavi isolated from Brazil nuts collected in the Amazon forest: investigation of macro- and microscopic morphology, production of extrolites, heat-resistance fungi, and sequencing of DNA regions. The following Aspergillus section Flavi species were identified: Aspergillus flavus (75.5%), Aspergillus nomius (22.3%), and Aspergillus parasiticus (2.2%). All A. nomius and A. parasiticus isolates produced aflatoxins B and G, but not cyclopiazonic acid (CPA). A. flavus isolates were more diversified and a high frequency of mycotoxigenic strains was observed. The polyphasic approach permitted the reliable identification of section Flavi species. The rate of mycotoxigenic strains was high (92.7%) and mainly included A. flavus strains producing elevated levels of aflatoxins and CPA. These results highlight the possibility of co-occurrence of both toxins, increasing their potential toxic effect in this commodity.
The aim of this study was to evaluate the effects of gamma radiation (GR) and electron beam (EB) on Brazil nut samples contaminated with Aspergillus flavus. Fifty samples were spread with an A. flavus suspension and incubated at 30°C and a relative humidity of 93%. After 15 days of incubation, mycobiota and aflatoxin analysis were performed. The samples were divided into three groups (control, group 1, and group 2) that received radiation doses of 0 kGy (control) and 5 and 10 kGy each of GR and EB (groups 1 and 2). Noninoculated samples were irradiated with the same doses for sensory evaluation. The results showed that after 15 days of incubation, the average water activity of the samples was 0.80. The irradiation with GR and EB at doses of 5 and 10 kGy was able to eliminate A. flavus in Brazil nut samples. Aflatoxin analysis showed that EB doses of 5 and 10 kGy reduced aflatoxin B1 levels by 53.32 and 65.66%, respectively, whereas the same doses of GR reduced the levels of this toxin by 70.61 and 84.15% compared with the level in the control groups. Sensory evaluation demonstrated that the texture and odor of irradiated Brazil nut samples were acceptable. The taste evaluation indicated that 5 kGy of GR was judged acceptable. The results highlight that both irradiation processes (5- and 10-kGy doses) showed efficiency in A. flavus and aflatoxin elimination. GR and EB treatments resulted in some alterations in the sensory attributes of samples with the doses used in this study; however, Brazil nut samples irradiated with 5-kGy GR doses were considered acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.