Objective: Soft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. Previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that cyclical strain, intended to mimic overuse injury, induces secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results. Results: Using cultures of primary human dermal fibroblasts, we confirm cyclical mechanical strain increases levels of IL-6 and adding long-duration stretch, intended to mimic therapeutic soft tissue stimulation, after cyclical strain results in lower IL-6 levels. We also extend the prior work, reporting that long-duration stretch results in lower levels of IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence that therapeutic soft tissue stimulation may reduce levels of pro-inflammatory cytokines. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.
Objective Soft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. A series of previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that repetitive strain, intended to mimic overuse injury, induces the secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results. Results Using cultures of primary human dermal fibroblasts, we confirm mechanical forces intended to mimic repetitive motion strain increases levels of IL-6 and that mechanical strain intended to mimic therapeutic soft tissue stimulation reduces IL-6 levels. We also extend the prior work, reporting that therapy-like mechanical stimulation reduces levels of IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence that therapeutic soft tissue massage may reduce inflammation. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.
ObjectiveSoft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. Previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that cyclical strain, intended to mimic overuse injury, induces secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results.ResultsUsing cultures of primary human dermal fibroblasts, we confirm cyclical mechanical strain increases levels of IL-6 and adding long-duration stretch, intended to mimic therapeutic soft tissue stimulation, after cyclical strain results in lower IL-6 levels. We also extend the prior work, reporting that long-duration stretch results in lower levels of IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence that therapeutic soft tissue stimulation may reduce levels of pro-inflammatory cytokines. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.
Individuals with osteoporosis, i.e., low bone mass, are at enhanced risk for fracture, disability, and death. Hospitalizations for osteoporotic fractures exceed those for heart attack, stroke, and breast cancer. Osteoporosis rates are predicted to increase due to an aging global population yet there are limited pharmacological treatment options for osteoporosis, particularly for long-term management of this chronic condition. Moreover, the drug development pipeline is relatively bereft of new strategies and drug candidates, creating an urgent need for developing new therapeutic strategies for treating osteoporosis. In this mini-review, we speculate about the potential for non-invasive soft tissue manipulation (STM) to exert anabolic effects on the skeleton that may provide therapeutic benefit for individuals with low bone mass. Our rationale is premised on work by us and others showing that STM leads to decreased levels of chemokines and pro-inflammatory cytokines (such as Interleukin (IL)-3, IL-6, and IL-8) known to restrict the differentiation and/or activity of bone-forming osteoblasts. However, there are no published studies examining whether STM impacts bone mass, potentially limiting the widespread use of this non-invasive and non-pharmacological intervention in the worldwide treatment of patients with osteoporosis, individuals with low bone mass due to being bed-ridden or otherwise mobility-limited, and persons subjected to spaceflight-related bone loss.
Objective Soft tissue manual therapies such as massage and myofascial release are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. A series of studies established an in vitro model system for mimicking therapeutic soft tissue stimulation of dermal fibroblasts and established that injury-like strain induces the secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain replicating soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results. Results Using cultures of primary human dermal fibroblasts, we confirm mechanical force profiles intended to mimic repetitive motion strain increases levels of IL-6 in conditioned media. And, we confirm that mechanical strain intended to mimic therapeutic soft tissue stimulation reduces IL-6 levels. We also extend the prior work, reporting that therapy-like mechanical stimulation reduces levels of IL-8. Collectively, these findings provide supportive evidence that therapeutic soft tissue massage may reduce inflammation. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic mechanical stimulation of soft tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.