The global cost of corrosion imposes a significant burden on society, with safety and environmental consequences in addition to its direct impact. One challenge to its management is that the process of corrosion is complex, and common experimental techniques provide only limited information. The neutral salt spray test, a standardized test used for the evaluation of the corrosion resistance of steels and coatings, creates an aggressive environment not suitable for many analytical methods. Here, we report the first use of in situ Raman spectroscopy to detect the formation, growth, and evolution of corrosion products on metal surfaces, monitoring a mild steel plate in alternating salt fog and dry atmospheric conditions over a period of eight days to identify and track key corrosion products. Assisted by multivariate curve resolution alternating least squares (MCR-ALS) analysis and online weighing of the sample, we found the chemical conversion of iron hydroxides to oxides takes much longer than the physical drying of the corroded surface. Together, these results pave the way for real-time online observation of corrosion inside a salt fog chamber to obtain chemically relevant information with a single, compact apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.