The synthesis of nanoparticles using thermal DC plasma method is a simple method for ease of installation and high efficiency is due to the rate of precursor that can be controlled. Micro-sized aluminum powder is synthesized using thermal DC plasma undergoing a process of evaporation as it passes through high temperature plasma flame, where kemuadian oxidized aluminum particles which evaporates the particles are split and binds with oxygen to form aluminum oxide or also known as alumina (Al2O3). In this experiment, the flow rate of oxygen plasma parameters at 35 SCFH (Standard Cubic Feet per Hour) and 20 amperes flows with precursors rate variation of 1.16 g / min, 3.19 g / min, and 3.5 g / min. Precursors used is 88 micro sized aluminum powder. To determine the morphology of nanoparticles of alumina testing scanning electron microscopy (SEM), the morphology form of nanosphere. Results of the analysis showed that the rate of precursor low causing agglomeration level slightly while the higher rate of precursor agglomeration rate also increased. At the rate of precursor 1.16 g / min, nanoparikel undergo agglomeration with an average particle size of 36.55 nm, and then at a rate of 3.19 gr precursor / mnt an average particle size of 46.49 nm, and at a rate of 3.5 gr / mnt an average particle size of 46.49 nm. The powder nanoparticles were then characterized using X-ray defraksi (XRD) where all alumina nanoparticles were synthesized showed alumina phase that is formed is a phase δ-Al2O3. Keywords: Alumina nanoparticles, DC Thermal Plasma, morphology, precursor rate, nanoparticles size, SEM, XRD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.