Advances in additive manufacturing techniques have enabled the creation of stimuli-responsive materials with designed three-dimensional (3D) architectures. Unlike biological systems in which functions such as sensing, actuation, and control are closely integrated, few architected materials have comparable system complexity. We report a design and manufacturing route to create a class of robotic metamaterials capable of motion with multiple degrees of freedom, amplification of strain in a prescribed direction in response to an electric field (and vice versa), and thus, programmed motions with self-sensing and feedback control. These robotic metamaterials consist of networks of piezoelectric, conductive, and structural elements interwoven into a designed 3D lattice. The resulting architected materials function as proprioceptive microrobots that actively sense and move.
We present the design, fabrication, modeling and feedback control of an earthworm-inspired soft robot capable of bidirectional locomotion on both horizontal and inclined flat platforms. In this approach, the locomotion patterns are controlled by actively varying the coefficients of friction between the contacting surfaces of the robot and the supporting platform, thus emulating the limbless locomotion of earthworms at a conceptual level. Earthworms are characterized by segmented body structures, known as metameres, composed of longitudinal and circular muscles which during locomotion are contracted and relaxed periodically in order to generate a peristaltic wave that propagates backwards with respect to the worm's traveling direction; simultaneously, microscopic bristle-like structures (setae) on each metamere coordinately protrude or retract to provide varying traction with the ground, thus enabling the worm to burrow or crawl. The proposed soft robot replicates the muscle functionalities and setae mechanisms of earthworms employing pneumatically-driven actuators and 3D-printed casings. Using the notion of controllable subspace, we show that friction plays an indispensable role in the generation and control of locomotion in robots of this type. Based on this analysis, we introduce a simulation-based method for synthesizing and implementing feedback control schemes that enable the robot to generate forward and backward locomotion. From the set of feasible control strategies studied in simulation, we adopt a frictionmodulation-based feedback control algorithm which is implementable in real time and compatible with the hardware limitations of the robotic system. Through experiments, the robot is demonstrated to be capable of bidirectional crawling on surfaces with different textures and inclinations.
We introduce Bee + , a 95-mg four-winged microrobot with improved controllability and open-loop-response characteristics with respect to those exhibited by state-of-the-art twowinged microrobots with the same size and similar weight (i.e., the 75-mg Harvard RoboBee). The key innovation that made possible the development of Bee + is the introduction of an extremely light (28-mg) pair of twinned unimorph actuators, which enabled the design of a new microrobotic mechanism that flaps four wings independently. A first main advantage of the proposed design, compared to those of two-winged flyers, is that by increasing the number of actuators from two to four, the number of direct control inputs increases from three to four when simple sinusoidal excitations are employed. A second advantage of Bee + is that its four-wing configuration and flapping mode naturally damp the rotational disturbances that commonly affect the yaw degree of freedom of two-winged microrobots. In addition, the proposed design greatly reduces the complexity of the associated fabrication process compared to those of other microrobots, as the unimorph actuators are fairly easy to build. Lastly, we hypothesize that given the relatively low wing-loading affecting their flapping mechanisms, the life expectancy of Bee + s must be considerably higher than those of the two-winged counterparts. The functionality and basic capabilities of the robot are demonstrated through a set of simple control experiments.Index Terms-Micro/nano robots, automation at micro-nano scales, aerial systems: mechanics and control.
We present the design, fabrication, modeling and feedback control of an earthworm-inspired soft robot that crawls on flat surfaces by actively changing the frictional forces acting on its body. Earthworms are segmented and composed of repeating units called metameres. During crawling, muscles enable these metameres to interact with each other in order to generate peristaltic waves and retractable setae (bristles) produce variable traction. The proposed robot crawls by replicating these two mechanisms, employing pneumatically-powered soft actuators. Using the notion of controllable subspaces, we show that locomotion would be impossible for this robot in the absence of friction. Also, we present a method to generate feasible control inputs to achieve crawling, perform exhaustive numerical simulations of feedforward-controlled locomotion, and describe the synthesis and implementation of suitable real-time friction-based feedback controllers for crawling. The effectiveness of the proposed approach is demonstrated through analysis, simulations and locomotion experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.