We present an extension of the λ(η)-calculus with a case construct that propagates through functions like a head linear substitution, and show that this construction permits to recover the expressiveness of ML-style pattern matching. We then prove that this system enjoys the Church–Rosser property using a semi-automatic ‘divide and conquer’ technique by which we determine all the pairs of commuting subsystems of the formalism (considering all the possible combinations of the nine primitive reduction rules). Finally, we prove a separation theorem similar to Böhm's theorem for the whole formalism.
We present an extension of the ()-calculus with a case construct that propagates through functions like a head linear substitution, and show that this construction permits to recover the expressiveness of ML-style pattern matching. We then prove that this system enjoys the Church-Rosser property using a semi-automatic`divide and conquer' technique by which we determine all the pairs of commuting subsystems of the formalism (considering all the possible combinations of the nine primitive reduction rules). Finally, we prove a separation theorem similar to B ohm's theorem for the whole formalism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.