Current training methods show advances in simulation technologies; however, most of them fail to account for changes in the physical or mental state of the trainee. An innovative training method, adaptive to the trainee’s stress levels as measured by grip force, is described and inspected. It is compared with two standard training methods that ignore the trainee’s state, either leaving the task’s level of difficulty constant or increasing it over time. Fifty-two participants, divided into three test groups, performed a psychomotor training task. The performance level of the stress-adaptive group was higher than for both control groups, with a main effect of t = −2.12 (p = 0.039), while the training time was shorter than both control groups, with a main effect of t = 3.27 (p = 0.002). These results indicate that stress-adaptive training has the potential to improve training outcomes. Moreover, these results imply that grip force measurement has practical applications. Future studies may aid in the development of this training method and its outcomes.
The challenge of autonomous indoor mapping is addressed. The goal is to minimize the time required to achieve a predefined percentage of coverage with some desired level of certainty. The use of a pre-trained generative deep neural network, acting as a map predictor, in both the motion planning and the map construction is proposed in order to expedite the mapping process. The issue of planning under partial observability is tackled by maintaining a belief map of the floorplan, generated by a deep neural network. This allows the agent to shorten the mapping duration, as well as enabling it to make better-informed decisions. This method is examined in combination with several motion planners for two distinct floorplan datasets. Simulations are run for several configurations of the integrated map predictor, the results of which reveal that by utilizing the prediction a significant reduction in mapping time is possible. When the prediction is integrated in both motion planning and map construction processes it is shown that the mapping time may in some cases be cut by over 50%.
We present a novel probabilistic gathering algorithms for agents that can only detect the presence of other agents in front or behind them. The agents act in the plane and are identical and indistinguishable, oblivious and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction and in this case extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case we can prove gathering into a very small circular region in finite expected time.
The main contribution of this paper is a novel method allowing an external observer/controller to steer and guide swarms of identical and indistinguishable agents, in spite of the agents' lack of information on absolute location and orientation. Importantly, this is done via simple global broadcast signals, based on the observed average swarm location, with no need to send control signals to any specific agent in the swarm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.