We show that every orthogonality-preserving linear map between normed spaces is a scalar multiple of an isometry. Using this result, we generalize Uhlhorn's version of Wigner's theorem on symmetry transformations to a wide class of Banach spaces.
A geometric property is introduced, and it is proved that Banach spaces with this property must carry weakly amenable algebras of approximable operators. These results are also applied to particular examples of Banach spaces, including the James spaces and the Tsirelson space.
Abstract. We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelson's space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.